
2 CROSSTALK The Journal of Defense Software Engineering March 1998

Education has always
been high on my list
of personal and career
goals. Over the years,
my parents, who are
retired schoolteachers,
have helped me see

the fun in learning and the importance
of learning to be the best you can be.
Though family commitments make it
difficult to go to school in addition to
work, I often find training opportuni-
ties in the workplace to fit my schedule
and career goals.

But it is not just the love of learning
that motivates me. I know that if I do
not continually engage in training, my
technical skill set will quickly become
obsolete. The fast pace of progress in
software technology leaves me no other
option; I have to educate myself con-
tinually in the latest techniques and
products.

Organizations generally recognize
that they cannot afford to rest on their
employees’ laurels any more than I can—
successful strategies today may not be

useful tomorrow. For this reason, the
implementation of a solid training pro-
gram is imperative to continued success.

But training is not something to be
left to chance. In the words of Watts
Humphrey, “Training must be planned,
funded, scheduled, and required”
(Managing the Software Process,
Addison-Wesley, 1989). The core of
most workplace training programs
comprise formal educational environ-
ments—workshops, classes, seminars.
Regular employee involvement in these
opportunities yields significant returns
on investment. Any manager who be-
lieves that cutting the cost of training is
a good way to save money will find
projects going over budget when early
mistakes have to be corrected in late
stages of production. As Paula Shafer
points out, “the cost of good training is
lower than the cost of not training or of
training poorly” (page 6). Time and
money is wasted when we learn by trial
and error.

Formal, organization-level educa-
tion should also be supplemented by

individual study. Most work environ-
ments today provide access to the
World Wide Web—a new dimension in
educational and distance learning op-
portunities. I am continually impressed
by the power of the Web and the li-
brary it puts at our fingertips. A fine
example is the Software Technology
Support Center’s Web site (http://
www.stsc.hill.af.mil). Here you will
find many software engineering educa-
tional aids and additional links to other
defense software engineering sites
(http://www.stsc.hill.af.mil/
websoft.html).

Employees need to inform their
management of their training needs.
When possible, the employer should
furnish employees with whatever they
need to sharpen their technical tool set.
Whether you take a TOPGUN ap-
proach to training (page 3) or you keep
up with the latest trends via the Inter-
net, we at CROSSTALK wish you success
in improving your skills and in meeting
your educational goals. u

Let’s Not Learn by Trial and Error
Tracy Stauder

Managing Editor

We at CROSSTALK thank all those who participated in our
December reader survey. We appreciate the comments and
suggestions offered; we are especially grateful for the kudos.
The statistics provided by this survey will go a long way to-
ward helping us determine what our readership needs and
wants.

However, the final tally has not yet been calculated (sur-
veys still arrive every day), so there is still ample time to com-
plete the survey if you have not already done so. If you did
not receive the December 1997 issue, or if the copy you have

is missing the survey, you will find it on-line at http://
www.stsc.hill.af.mil/XTalkSurvey.asp.

One of the preliminary results of our survey shows that
readers enjoy the Letters to the Editor column. If you have
read an article in CROSSTALK and feel that you have something
to add to an author’s words (or if you disagree with them
altogether) please take the time to compose a brief letter and
send it to the senior editor, Sandi Gaskin, at
gaskins@software.hill.af.mil. Though brief, these succinct
opinion pieces clarify issues and raise important questions.
Please don’t hesitate to make your voice heard.

From the Publisher

CROSSTALK Reader Survey

CROSSTALK Needs Your Feedback, Letters

CROSSTALK The Journal of Defense Software Engineering 3March 1998

Software is not only ubiqui-
tous, it is imperative. Informa-
tion technology is deeply embed-

ded within nearly every high-perfor-
mance military system in use today, and
many of the highest-performing weap-
ons systems could not be mission effec-
tive without software. This applies to
flight control systems, radar tracking
and fire control systems, command,
control, communications, computers,
and intelligence systems, autonomous
mission planning systems and many
others. Even the infantryman is begin-
ning to rely on software for enhanced
battlefield performance. Indeed, the
software share of weapons systems life-
cycle cost has grown to be quite large,
and it is growing at an increasing rate.

However, when compared with
weapons systems hardware, software
engineering represents a nascent disci-
pline that reflects a high variance of
methods, tools, technologies, and results.
Coupled with steadily increasing com-
puting power, software requirements
perennially stretch the technological
envelope and frequently are tied to
schedules that challenge even the most
mature engineering disciplines. Hence,
software engineering represents one of
the highest risk areas in modern weapons
systems development, and its share of
program risk increases exponentially
with the growing dependence on weap-
ons systems software. This makes em-
bedded weapons systems software an
extremely difficult acquisition problem.

The TOPGUN Approach to
Software Acquisition Education

Mark E. Nissen
Naval Postgraduate School

The Naval Postgraduate School’s TOPGUN approach augments the education of military of-
ficers with the leading principles, practices, tools, and techniques associated with software pro-
gram management. The four-unit course involves student education, training, and research, in
addition to direct experience through the TOPGUN software acquisition project. Because so
many software acquisitions fail, this education and experience can be critical to surviving a
program manager’s first encounter with acquisition. As in the dogfight, surviving one’s first
software acquisition represents the key challenge to returning to learn from a second and third.

The Naval Postgraduate School
(NPS) has recently redesigned a gradu-
ate course from the acquisition curricu-
lum to address this problem by aug-
menting the education of military
officers with the leading principles,
practices, tools, and techniques associ-
ated with software program manage-
ment. The specific missions of this
course are to help mitigate the difficul-
ties inherent in software-intensive sys-
tems acquisition, to educate students in
the principles and techniques of soft-
ware acquisition and engineering, and
to spark increased innovation in the
acquisition process. The course, entitled
“Embedded Software Acquisition,” is
offered to NPS graduate students—
predominately military, but interna-
tional officers and civilian professionals
also attend—who are in residence at the
Monterey, Calif. campus and enrolled
in the program management (816)
curriculum. Several elements of the
course may also lend themselves to
(synchronous) distance education.

The software acquisition course is
comprised of four primary elements:
education, training, research, and experi-
ence. Educationally, the course addresses
the key principles of software acquisition
and engineering, and takes a process-
innovation approach. Students learn
how and why software is unique and
study textbook practice and practical
cases associated with its engineering and
innovation in the commercial sector and
the Department of Defense (DoD).

Training involves direct exposure to the
DoD processes for software acquisition
and assimilation of the best commercial
practices and military lessons learned for
procurement and program management.
Students learn to critique—and perform
in—the current acquisition system, with
an emphasis on anticipating continuous
acquisition reform and effecting process
innovation. Through research papers,
the students investigate the innovation
aspects of software acquisition they are
likely to encounter as program manag-
ers.

The experiential component in-
volves “hands-on” usage of current tools
and methods employed in software
acquisition as students are given direct
responsibility for managing and execut-
ing software development projects.
These tools and methods include func-
tion and feature points, COnstructive
COst MOdel estimating (COCOMO),
Statistical Modeling and Estimation of
Reliability Functions for Software reli-
ability prediction, software capability
assessment, metrics, and collaboration.
Students learn to integrate and apply
their relevant education and training
through integrated product teams
(IPTs) that are responsible for software
planning, development, maintenance,
and support.

TOPGUN Approach
The TOPGUN approach refers to the
aerial combat tactics course that in-
spired a movie by the same name. Mili-

Software Training and Education

4 CROSSTALK The Journal of Defense Software Engineering March 1998

tary research that focused on the disap-
pointing aerial combat kill ratios of
previous conflicts found that aviators
who had experienced and survived even
a small number of dogfighting engage-
ments were exponentially more likely to
survive their next one than were inexpe-
rienced pilots. Thus, the TOPGUN
program was developed to provide a
realistic training environment for stu-
dents to experience and learn from aerial
combat in a relatively safe environment.

Clearly, this approach is not limited
to aerial combat tactics. The integration
of principled education and realistic
experience represents a well-accepted
and effective pedagogical technique.
This approach represents a centerpiece
of the NPS software acquisition course,
which as noted above, incorporates
principles of software program manage-
ment with the realistic experience of
managing a software development
project.

Because every graduate from the
program management curriculum is
increasingly likely to be responsible for
some aspect of weapons systems soft-
ware acquisition—even if assigned
responsibility for a “hardware” pro-
gram—this course helps to prepare
them for their first encounter. In
TOPGUN tradition, the students
“train like they fight, and fight like they
train.” Moreover, because so many
software acquisitions fail, this education
and training can be critical to surviving
the first encounter; as with the dog-
fight, we feel that surviving one’s first
software acquisition represents the key
challenge to returning to learn from a
second and third.

Course Requirements
Course requirements include readings,
case analyses, an examination, a research
paper, student synopses, and class par-
ticipation in addition to the TOPGUN
project. Each of the requirements for
this four-unit course are summarized
here; a more thorough description can
be accessed through the course Web
pages (http://web.nps.navy.mil/
~menissen/mn3309).

Readings
Students are assigned more than a thou-
sand pages of reading material that is
required for adequate class preparation.
They quickly learn that their (graded)
class participation suffers if they fail to
keep pace with the readings, and they
are taught advanced volume-reading
techniques for assistance with this re-
quirement. Readings include the Soft-
ware Technology Support Center
Guidelines for Successful Acquisition and
Management of Software-Intensive Sys-
tems as a text, numerous General Ac-
counting Office cases that address soft-
ware management, an abundance of
on-line readings, and handouts from
current journals and periodicals. Al-
though the course is primarily directed
toward education as opposed to train-
ing, the assigned material also includes
the Defense Acquisition Workforce
Improvement Act content from the
software acquisition management series.

Case Analyses
As noted above, numerous software
management cases are assigned as an
integral part of the course readings and
integrated into case-method lectures.
One or two encompassing cases are
thoroughly analyzed and presented by
students working in small teams (three
or four people). The purpose of the case
analyses is to ground students’ course
knowledge in complex and relevant
software programs. This requires the
application of concepts, principles,
tools, and techniques learned in class in
addition to the analysis of real-world
programs and design of program-
management solutions.

Examination
A comprehensive examination tests
students’ ability to integrate the read-
ings with lectures, cases, and discus-
sions and to critically apply the prin-
ciples, concepts, and applications
covered in the course. The examination
mostly tests students’ higher-level
knowledge and abilities (as opposed to
narrow details) and requires under-
standing, application, synthesis, and
some creativity and design (as opposed

to short-term memorization and “data
dumping”). Unlike case analyses and
the course project, which involve team-
work, the examination measures only
individual effort.

Research Paper
Each student must write a research
paper (approximately 5,000 words) that
investigates a relevant aspect of software
acquisition or engineering innovation.
This helps students specifically tailor
their learning to a topic of direct or
immediate relevance. It also provides
the opportunity to work toward inno-
vation, the results of which can be
taken directly to the job and applied
after graduation. Recent papers have
investigated the use of requisite variety
for weapons systems prioritization,
agent-based contract management,
reengineering the software acquisition
process, and other personalized investi-
gations. Because the course is taken
midway through the master’s program
at NPS, students are encouraged to
focus on topics that help them orient
and focus their thesis research.

Student Synopses and
Participation
Oral and written communications
represent important managerial skills
for military and business leaders, and
with the advent of oral contracting,
critical listening and interaction skills
are now becoming increasingly impor-
tant in acquisition. To practice and
enhance these skills, students work in
two-person teams to prepare written
synopses of selected course material,
then present this material to the class.
Presenters are expected to effectively
communicate the key elements of this
material to classmates, who must in
turn interact with the presenters to
demonstrate a reasonable understand-
ing and appreciation for the key points.
Active class participation is strongly
encouraged, and students strive to re-
late their relevant operational experi-
ence to the principles and practices
covered in class.

Software Training and Education

CROSSTALK The Journal of Defense Software Engineering 5March 1998

TOPGUN Project
In addition to accredited graduate edu-
cation and the requirements outlined
above, the TOPGUN project probably
best distinguishes this software acquisi-
tion course from others. The project
entails team activities that involve soft-
ware acquisition and software engineer-
ing. Half the teams serve as program
management offices (PMOs) for Web-
based software projects and the other
teams perform as contractors to develop
the required software systems. Although
the software is technically simple and
the project scope is small—as is appro-
priate for a quarter-long course—the
students must go through most of the
required acquisition and engineering
steps, e.g., a mock Defense Acquisition
Board and Milestone II review, Soft-
ware Development Plan, Preliminary
Design Review and Critical Design
Review, Request for Proposal prepara-
tion and analysis, proposal preparation
and source selection, in addition to
managing the development of the soft-
ware. Many outside software profes-
sionals have commented on the realism
of the project environment, particularly
in terms of the ambiguity, uncertainty,
schedule pressure, metrics-tracking, and
IPT-coordination difficulties that are
encountered even on this technically
simple project.

As an interesting twist (and peda-
gogical departure from reality?), the
incrementally developed software is
fielded at the project midpoint—mid-
way through the course, ready or not!
The teams then switch roles and main-
tain the software in a post-deployment
software support (PDSS) mode; that is,
those on the PMO teams become “con-
tractors” and maintain the software,
while the original contractor teams take
over the PDSS activities, such as site
operation, training, and enhancement.
The students never fail to express their

amazement of how this change of per-
spective affects their attitudes, and
students on both sides of the contract
quickly reflect back on their perfor-
mance in the other role with greater
empathy and understanding of how
interrelated software acquisition and
engineering truly are.

The project involves developing a
Web site on software acquisition (http:/
/web.nps.navy.mil/~com) that is not
intended to be spectacular in any re-
spect; rather, it provides a focus and
some minimal technical challenge for
the course project, and it requires the
students to integrate, organize, and
present their learning about software
management to the world. Students
take this requirement seriously—al-
though they appear to enjoy the project
tremendously—and produce insightful
summaries of key principles, practices,
tools, and techniques associated with
software management. They also provide
a valuable set of lessons learned for fu-
ture classes as an approach to organiza-
tional learning.

Results
This course produces a number of re-
sults. At its conclusion, many students
express feelings of confidence combined
with humility, for example. They seem
to appreciate the power and value of
advance planning, close integration of
software acquisition with engineering,
teaming, metrics, and “inch pebble”
(small milestone) management, and
they feel much better prepared to take
on a software management job after
graduation. At the same time, they
appreciate how difficult it can be to
manage a technology-focused IPT and
program, even for a technically simple
product. Faculty colleagues comment
on the students’ comfortable familiarity
with software concepts in their other
courses and their ability to extend some
of the useful techniques to non-

software program management prob-
lems.

In the end, nearly all students indi-
cate that they are better prepared to
manage software-intensive programs as
a result of the course—and I concur. If
they can “come back alive” from their
first engagement with a real software
program, all the work required to make
this kind of course effective will pay off.
With students from the first class
graduating this year and being assigned
to challenging weapons systems pro-
grams, we should soon see whether our
TOPGUN approach to software acqui-
sition fulfills our high expectations for
it. As a professor dedicated to constant
improvement, I welcome any feedback
that can help further this goal. u

About the Author
Mark Nissen is a profes-
sor of information sys-
tems and acquisition
management at the Na-
val Postgraduate School
and leads the school’s
program of acquisition

research. He is the course coordinator for
MN3309, Embedded Software Acquisi-
tion, and also teaches courses on decision
support and information technology
acquisition, in addition to advanced
graduate seminars on process innovation,
intelligent agents, and like topics. His
research is directed toward the applica-
tion of knowledge systems to innovate
acquisition processes, with current work
focused on intelligent acquisition agents.
Before beginning his academic career, he
acquired a dozen years management
experience in the aerospace industry and
was a supply officer in the Naval Reserve.

Naval Postgraduate School
555 Dyer Road, Code SM/NI
Monterey, CA 93943-5000
Voice: 408-656-3570
Fax: 408-656-3407
E-mail: Mnissen@nps.navy.mil

The TOPGUN Approach to Software Acquisition Education

6 CROSSTALK The Journal of Defense Software Engineering March 1998

The first thing to ask when
planning a training program is
“What do people need to do

their jobs?” The answers to this ques-
tion usually fall into the following cat-
egories:
• Process – a way to work.
• Technology – the tools with which

to work.
• Management support – a reason for

the work.
• Skills – ability to do the work.

Process addresses what work to do,
how to perform the task, when to do it,
what resources are required, who has
the inputs, and who gets the results.
Without process, there is chaos. Train-
ing alone cannot establish process, but
process improvement is at best transi-
tory without good training. Also, inef-
fective, inconsistent, or undocumented
processes require more training to over-
come the confusion or miscommunica-
tion that is rife in immature organiza-
tions. Employees who attend training
and return to an undisciplined environ-
ment will often not use the skills
learned. The money spent on the train-
ing will have been wasted and morale
will suffer.

Technology. People need appropri-
ate tools and technology to perform
their jobs. An organization and its man-
agement select, purchase, and make
available the appropriate technology.
The company’s process indicates appro-
priate uses for the technology. Training
tells the employee how to successfully
use new technology.

Management support is needed to
provide the motivation for effective
organizational change. An effective
reward system reinforces desired behav-
ior and corrects undesired behavior.
Although some organizations try to
motivate through training, there is little
or no lasting impact with this approach.
Courses that attempt to motivate have
objectives that use phrases such as “un-
derstand” or “provide an overview” or
“gain an appreciation.” Participants
may leave this kind of training en-
thused, but a week later they are back
to old work patterns. Training cannot
be effective without management sup-
port consistent with the messages in the
training program.

Skills and knowledge are where
training can have the most impact in an
organization. Skills that people need
overlap with process and technology
and are reinforced through effective
management support. Training is not
the solution to problems that businesses
have today; however, without training,
an organization will fail in its process
improvement program.

This article defines effective train-
ing, discusses various means to deliver
training, and suggests possible metrics
to evaluate training effectiveness.

Training Goals
Effective training is integrated and
consistent with many aspects of a soft-
ware development group. It must be
consistent with the following:
• Organizational goals and strategy.

Although training does not define

or establish business strategy, it is
important to reinforce that strategy
at every opportunity, including
during training. Training developed
and delivered within the organiza-
tion should always begin with the
business goals. Any training pur-
chased from outside can be aligned
with those goals if it is introduced
by senior management, who rein-
force the mission and vision.

• Project planning. The Organization
Standard Software Process (OSSP)
software project planning proce-
dures need to address project train-
ing needs. For example, software
development planning standards
should account for training to en-
courage the planners to consider
what skills and abilities their project
team members will require.

• Software quality assurance (SQA). An
independent SQA program must be
highly involved in training. Inde-
pendent SQA can perform multiple
roles for a software development
organization: verifying the imple-
mentation of processes, mentoring
projects in the use of processes, and
collecting and analyzing data on the
quality of product and process.
Integrating training and SQA means
several things. First, some training
may be delivered by the SQA orga-
nization. Second, SQA participates
in the review of training materials to
ensure that the messages of the
training are consistent with the
organization’s standard software
process. Third, SQA ensures that

Planning an Effective Training Program
Paula S. Shafer

Independent Consultant

In Quality Is Free, Bill Corsby notes that the cost to build a product correctly (cost of con-
formance) is lower than the cost to fix the product after delivery to clients (cost of non-
conformance). The same concept is true in training: the cost of good training is lower than the
cost of not training or of training poorly. Organizations stand to lose significant amounts of
money from lost productivity when there are changes in process, technology, or culture and
employees are not properly trained to handle them. Some organizations report a 3,000 per-
cent to 6,000 percent return on investment from good training [1]. By contrast, poor training
or poorly planned training wastes money and time and lowers morale. A properly planned
training program is required to ensure success and return on investment for training dollars.

CROSSTALK The Journal of Defense Software Engineering 7March 1998

project teams receive the training
that had been planned. Finally, as
SQA analyzes process and product
quality, it may propose additional
training or improvement of existing
training.

• Software process improvement (SPI)
initiatives. The organization’s SPI
program should address training in
multiple places. The Software Pro-
cess Engineering Group (SEPG)
ensures that process training is inte-
grated into the OSSP. It defines a
process to plan, to make available,
to track, and to measure quality of
training. The SEPG also coordinates
or delivers training on topics related
to process. Examples of training that
the SEPG addresses are the Capabil-
ity Maturity Model, process analy-
sis, process modeling, or using spe-
cific processes during pilots and
implementation.

Theory vs. Practice
Effective training focuses on skills or
competence in the software develop-
ment organization. It is specific, timely,
and result oriented. People learn by
doing, but many trainers do not seem
to realize this. Many training tech-
niques do not include active involve-
ment by participants; instead, partici-
pants spend most of their time listening
to an expert lecture on the theory of
topics like SQA or project planning.
Precious little time is devoted to prac-
ticing these theories. One colleague of
mine calls this the “spray-and-pray”
approach: the lecturer disperses knowl-
edge, and management hopes it will
somehow be absorbed. What usually
happens instead? If the participants can
stay awake, they may learn something,
but there is no way to test what they
learned until they return to the work-
place. When the real world collides
with the theory, the theory will not be
applied, no one is available to help the
employees apply it, and old methods or
habits are perpetuated. The training
dollar is wasted, and the employees
become discouraged.

In an effective training course, real-
world experience and applying skills are
more important than theory. The goal

is not to put employees through train-
ing; the goal is for employees to learn
and begin to apply new skills. Less time
is spent in lecture and more time is
spent practicing the skill. A good ap-
proach is the case study. For example, a
course on peer reviews could provide
participants with the experience of a
peer review through sample materials
for a simulated software inspection. A
better approach is to use actual materi-
als from the trainees’ projects. For ex-
ample, a former colleague of mine de-
livered analysis and design principles
training to an entire project team using
its own project rather than a case study.
The training was spaced over a period
of time as well: teach a little, then work
a little. The skills could then be used in
“real life,” and the trainer could be
questioned upon returning to the class-
room after the trainees tried out the
concepts. When the team completed
this training, it had draft work products
that were used as they progressed in the
project.

Methods of Training
Once a careful analysis of the training
needs has been accomplished, appropri-
ate training can be developed. Several
methods of delivering the training are
viable in today’s environment.
• Classroom.
• Teletraining.
• Videotape presentations.
• Job aids or just-in-time training.
• Mentoring.
• Computer-based training.

All have value when used appropriately.
To gain the most out of training, use all
the methods that make sense for the
organization’s needs.

Classroom training is the tradi-
tional delivery approach and may also
be called a workshop, lecture, or labora-
tory. This approach relies on an instruc-
tor who leads a participant discussion
and usually a case study or exercises.
This mechanism is the most flexible
and easiest to adapt. It can be devel-
oped comparatively quickly and inex-
pensively. Drawbacks are lost work time
for the participants, scheduling difficul-
ties, travel costs, and the lack of skilled
instructors.

A close approximation to training in
the classroom is teletraining or using
teleconferencing facilities for a lecture
or laboratory-type course. This is useful
in the same ways as classroom-led train-
ing. Additionally, it can be delivered to
isolated or dispersed locations while
minimizing travel costs. This does,
however, require a significant invest-
ment in technology, and it still requires
that people leave their work site. Also,
teletraining can present scheduling
problems, especially when the partici-
pants are located in different time
zones. Teletraining also is difficult to
make interactive and limits the
instructor’s available techniques. It is
best used for short, clear, and concise
training.

Videotaped training is gaining
popularity in some organizations. This
has some of the same advantages of
teletraining in that the training can be
delivered to remote locations but does
not require the significant investment
in technology required by teletraining.
It is excellent for delivering short, clear
messages and can incorporate inter-
views or demonstrations from managers
or staff, especially when used in con-
junction with other forms of training.
The disadvantages are the high develop-
ment and production costs and the lack
of participant interaction. Generally,
this form has limited utility if used
without on-site support.

Job aids, also called just-in-time
training, are items such as cards or
trifold brochures that outline a proce-
dure succinctly. These are a useful
means of training—relatively inexpen-
sive to develop, and easily modified
when needed. This form of training
does not require that participants leave
the job, thus minimizing costs such as
lost productivity or travel. These aids
can be used to supplement any other
form of training, especially for topics
like procedures and technology. They
are not effective stand-alone, especially
for complex skills like project planning.
Additionally, unless carefully designed,
they can be complex and difficult to
comprehend.

Highly skilled people who guide the
learner in the workplace perform

Planning an Effective Training Program

8 CROSSTALK The Journal of Defense Software Engineering March 1998

mentoring. This approach is inexpen-
sive to develop because the expert al-
ready has the skills. It is provided at the
time the participant needs it and does
not require leaving the workplace. It
does require some investment, though.
The mentor’s instructional skills need
to be developed, and a structure for the
training, such as a “lesson plan,” needs
to be developed. Quality control is
difficult because there is usually no
evaluation of it. This form of training
works only when properly planned to
ensure that the mentor is available,
able, and motivated. To merely give
training participants the name and
telephone number of the expert to call
if they have problems is not mentoring.
The danger in this approach is the
potential to propagate bad practices if
the mentors do not apply best practices.

Computer-based training is useful
in some situations. If well designed, it
can be interactive, be used in dispersed
geography, minimize travel costs, and
reach a wide audience quickly. It is
especially useful in simulating danger-
ous or costly situations, such as landing
a jet on an aircraft carrier. However, it
requires significant development costs
and lead time and can have significant
delivery costs when simulating complex
environments. It is good for learning
basic skills but falls short when used to
teach advanced skills. Eventually, the
“pilot” has to try to “land a real air-
plane.” This form of training is usually
difficult to maintain, update, and redis-
tribute.

All of these forms of training have
strengths and weaknesses. When appro-
priately integrated, they can capitalize
on the strengths of each while overcom-
ing their individual weaknesses. The
result will be the development of a
coherent and comprehensive training
capability.

Measuring the Quality of
Training
There are at least four ways to measure
the quality of a training class or pro-
gram: post-course evaluations, testing,
follow-up surveys, and the
organization’s metrics program.

Most training courses end with a
post-course evaluation completed by
the participants. These forms ask the
participant’s opinion of the course ma-
terials, the instructor, and the classroom
environment. But it can be difficult to
know precisely what these evaluations
measure. Do they evaluate whether the
participants learned anything or
whether they merely enjoyed the train-
ing? For example, studies show that
these evaluations show high marks
when the instructor tells jokes. How-
ever, studies also show that when par-
ticipants enjoy the experience, they
open their minds to the new process or
procedure, which is a key step to
change behavior. Unfortunately, post-
course evaluations do not measure the
effectiveness of the training in changing
behavior in the workplace.

Testing is an effective means to
evaluate whether a participant learned.
However, this form of evaluation re-
quires investment in developing good
tests. This form of evaluation is needed
in certain circumstances, such as main-
taining accreditation with an organiza-
tion like the American Council on
Education. The tests allow employees to
achieve credit for the training in a uni-
versity environment. However, many
organizations find the value of the
credit is not worth the expense.

Follow-up surveys are an improve-
ment on the post-course evaluation.
The approach is to send an evaluation
to participants some time after the
training was delivered, e.g., six to nine
months later. These surveys are gener-
ally more in-depth than most end-of-
course evaluations and are targeted to
the goals of the training course. Such a
survey would ask questions such as
“Have you defined and are you using
the procedure for making the software
project size estimates?” These surveys
only secondarily seek to determine the
participant’s opinion of the training.
The focus is on the behavioral change
in the work environment. These surveys
also can gather data concerning other
factors discussed earlier, such as process,
technology, or management support.
The chief drawback to follow-up sur-
veys is the cost to develop and conduct

the survey. It also is difficult to get
people to respond to surveys; those who
do respond may not represent the aver-
age participant.

The best way to judge a training
program is in conjunction with the
organization’s metrics program. Collect
appropriate data before and after con-
ducting training. Effective training will
result in improvement in the data. As
an example, software inspection data
reveals that 75 percent of defects found
in design, code, and test phases of the
software lifecycle relate to defects in
requirements. Six months after imple-
menting a training program in require-
ments elicitation and analysis, the de-
fect rate goes down to 35 percent, and
the training can be declared a success.

Summary
Training is necessary to improve pro-
cess, but it costs money. Poor training
potentially wastes money, lowers mo-
rale, and reduces productivity. Good
training achieves significant returns on
investment. To get the most out of your
training investment,
• Deliver training aligned with busi-

ness strategy.
• Focus on skills that people need.
• Emphasize interactive training.
• Provide multiple forms of training.
• Reinforce through management

support. u

About the Author
Paula S. Shafer is a
freelance consultant
and trainer specializing
in software project
management and soft-
ware process improve-
ment. She has nearly

25 years software development experi-
ence. She is currently developing a course
in requirements management.

220-K Stony Run Lane
Baltimore, MD 21210
Voice and Fax: 410-366-6430
E-mail: psshafer@erols.com

Reference
1. Wiggenhorn, William, “Motorola U:

When Training Becomes an Educa-
tion,” Harvard Business Review, July-
August 1990, p. 75.

Software Training and Education

CROSSTALK The Journal of Defense Software Engineering 9March 1998

base that pertains to each individual
and training domain. We employ two
types of logobots: student logobot and
instructor logobot.

The student logobot acts as the
student’s personalized interface to the
remote training. It uses an acquired
knowledge base of preferences and
reference material and maintains each
student’s bookmarks. Salient features
enabled by this agent include
• On-demand or automated update of

training material.
• An intuitive interface to the training

material, which includes the ability
to search the student’s bookmarks
by specifying domain, URL, title, or
description.

• Personalization by selection of train-
ing domains and other preferences.

• Ability to change the default prefer-
ences assigned by the instructor.
These capabilities provide flexibility

for students to identify their training
needs. This not only motivates students
but also helps them explore the para-
digm of learning to learn and just-in-
time learning.

The instructor logobot acts as both
an interface agent and an information
agent. It helps instructors easily acquire
training information from various
sources and automatically disseminate
it appropriately to the students. It can
search the Internet and helps instruc-
tors filter relevant information and
classify it into different domains. It also
assigns default training preferences for
different classes of students. Multiple
instructor logobots maintain a central-
ized knowledge base for various train-
ing domains. Each instructor logobot

The U.S. military has several
training facilities geared toward
military personnel who are

geographically distributed. Like other
military units, the U.S. Army offers
mail-based correspondence courses
from battle laboratories such as Com-
bined Arms Support Command
(CASCOM) in Fort Lee, Va. Although
there is no core curriculum, students
enroll in different courses based on
their military occupational specialty
(MOS). The project described in this
article is indicative of the steps the
Army is taking to migrate from paper-
based to electronic training by way of
the Internet.

This project provides instructors
with tools to gather and categorize
Internet uniform resource locators
(URLs), and lets students choose cat-
egories of URLs that can be automati-
cally stored in their bookmark (favor-
ites) collection. The instructor can
exercise control over training materials
accessed by students and, as a secondary
benefit, can restrict unnecessary “net
surfing.” Because one of the aims was
to provide interdisciplinary training to
students, the subject categories for
organizing the URLs, which we labeled
domains, cut across the students’ MOS
categorization. They can subscribe to
any domain they wish, but can only
access the URLs provided by the in-
structor. This effectively constitutes one
use of an Intranet wherein the instruc-
tor employs the Internet as a source of
training material to be housed in an
Intranet server that students access.

We devised a software architecture
based on the emerging technology of

intelligent software agents that we call
logobots (from logos [Greek for knowl-
edge] and bots [Internet jargon for intel-
ligent agents]). This multiagent system
has been delivered and installed at
CASCOM. This project demonstrates
the capabilities added by agent technol-
ogy to the more traditional client-server
software architectures that are com-
monplace in military applications. We
highlight some of the design issues that
are likely to be faced by other software
engineers who develop Internet-based
training applications.

Logobots
An intelligent agent is a software pro-
gram that autonomously senses the
environment, acts upon it, and over
time acquires competence by learning
from the environment [1]. Depending
on their functionality, agents can be
described differently. An agent that acts
as a personal assistant is called an inter-
face agent in [2]. An agent that has
access to at least one and potentially
many information sources, and is able
to collate and manipulate information
obtained from these sources and re-
spond to user queries, is called an infor-
mation agent in [3].

Logobots, which are best described
as task-specific autonomous software
agents [4], are both interface agents and
information agents, as we will elaborate
below. One logobot is assigned to each
instructor or student, and each aug-
ments its knowledge base as new infor-
mation becomes available. Each logobot
maintains training information for its
user and has user-interface capabilities
to acquire and maintain a knowledge

Intelligent Agents for Internet-Based Military Training
Niraj Joshi and V.C. Ramesh

Illinois Institute of Technology

In a project sponsored by the U.S. Army Research Office, we developed and delivered an
Internet-based multi-agent system for military training. We describe the client/server-
based software architecture of this multiuser intelligent agent (logobot) application that
focuses on bookmark automation. We pinpoint some software design issues, such as the
inevitable trade-off between real-time response and the complexity of the knowledge base,
which will likely be encountered in similar Internet-based military training applications.

10 CROSSTALK The Journal of Defense Software Engineering March 1998

can be personalized. Salient features
enabled by this agent are
• An Internet search interface based on

Java client-server technology, which
uses popular search engines like
AltaVista to locate training informa-
tion.

• Filtering of the search results and
classification of filtered sites. Infor-
mation about the state of each
document or site is maintained as a
part of the central knowledge base;
the agent maintains and uses this
information to filter out previously
seen URLs.

• Facilities for management of do-
main information, student informa-
tion to link students to the domains,
and for setting the default prefer-
ences.

System Architecture
Logobots are a multiagent system that
contains agents and a centralized re-
pository [5]. It is designed to operate in
a distributed multiuser (Internet) envi-
ronment. From a knowledge engineer-
ing viewpoint, this architecture could
be considered a blackboard architecture
[6], which is implemented using client-
server tools and techniques. Agents
(logobots) act upon the central knowl-
edge base according to user requests
and make changes to the repository
according to the state of repository

individually choose their preferences for
the sections of training material and to
search the material for references.

Instructor logobot supports addi-
tional functions to maintain the central
knowledge base and manage the user
information. Through the Internet
search interface, the instructor can find
training material over the Internet. The
crawler component contacts various
information sources on the Internet
and gets the URLs. These URLs are
filtered and classified by the comparator
component, according to the state in-
formation in central knowledge base.
Exact matches are eliminated, and if
necessary, the results are shown to the
instructor for further filtering. The
instructor may add URLs to certain
domains and reject others. These in-
structor activities are recorded and used
later for more efficient search, filtering,
and classification.

System knowledge is augmented
every time the user performs an action,
and the system learns from both the
user and the environment. The student
and the instructor logobots are client-
side components implemented using
Java applets, JavaScript, and plain
HyperText Markup Language, whereas
the central knowledge base is a server-
side component implemented with
common gateway interface (CGI) pro-
grams. The client-server type search
modules are implemented using Java
applets and applications.

Design Issues
Instructor logobots perform filtering
and classification functions based on a
learning algorithm, which is a simpli-
fied version of a technique called
memory-based reasoning (MBR) [3].
The search interface monitors the selec-
tion and rejection of bookmarks when-
ever the instructor is adding training
material. Bookmarks and related infor-
mation are stored in accept and reject
bins and later used to filter, classify, and
search for new material.

With a little modification, advanced
learning techniques like neural nets or
semantic nets could augment this
simple learning scheme. However, this
software had to be usable at CASCOM

Figure 1. Overview of the multiagent logobots system.

data. Logobots have unique identity
and built-in security and authentication
information. Users need to authenticate
before logobots let them access the
central knowledge base.

Figure 1 illustrates the system archi-
tecture. After proper authentication,
students or instructors invoke their
logobots. The central knowledge base,
which is resident on a networked server
with an operational Web server, contains
domain information and training mate-
rial specific to the domains, as well as
user or logobot information; the current
state of the knowledge base, which in-
cludes the accept bin and reject bin, is for
memorizing processed information.

Figure 2 displays the internal archi-
tecture of the logobots and shows the
various interactions between their mod-
ules and the central knowledge base. As
previously indicated, all logobots are
dispatched from a central site (Web
server), which houses the central
knowledge base and its access modules.
Once the logobots are launched into
the user’s Web browser, they display a
personalized initiating page for the user.
The user can navigate through the
system, accessing various training mate-
rials in different domains. Both of the
logobots provide a keyword-based
search facility over the domain knowl-
edge base. Use of the search and person-
alization mechanism allows students to

Software Training and Education

CROSSTALK The Journal of Defense Software Engineering 11March 1998

as quickly as possible after installation;
upon considering the time it takes to
train instructors in these advanced
schemes, we implemented the simpler
MBR scheme. Such trade-offs are often
inevitable with intelligent agent-based
software systems.

The decision to use the MBR learn-
ing algorithm led to another design
trade-off: response time vs. the size of
the state information stored in the
accept and reject bins in the central
knowledge base. Recall that for each
URL, at a minimum, state information
includes the title of the corresponding
Web page. URLs in the accept bin also
include the domain name. One also
could add descriptive information
about the contents of the Web page.
Clearly, the number of URLs and the
complexity of the information stored
for each will determine the size of the
accept and reject bins. The larger the
size of these bins, the better the filtering
of the URLs. However, larger accept
and reject bins also lead to poorer re-
sponse times and greater delays, which
leads to potential user frustration.

How many URLs should be stored?
It is difficult (if not impossible) to de-

the Web were unproven technologies.
However, these technologies turned out
to be advantageous for several reasons.
One of the main benefits was the ease
with which our Java-based instructor
logobots could access popular search
engines, such as AltaVista, and build on
those results for URL filtering. This
prevented the need to create a new
search engine and let us concentrate on
the higher-level filtering and user inter-
face aspects. We believe that such Inter-
net-based agent applications that lever-
age the client-server infrastructure of
the Web will enable the military to
migrate its distance learning facilities to
the Internet.

Conclusion
Intelligent software agents are now
migrating toward mainstream software
systems. We have described one such
system for increasing the efficiency of
military training. The system can be
particularly valuable in controlling the
rapid influx of information in times of
crisis (such as a war) by filtering and
classifying voluminous event reports
into pre-defined subject categories, with
students receiving only the portion of
information relevant to their line of
duty. It also reduces the costs involved
in providing military training when
compared to the traditional paper or
CD-ROM-based techniques.

Though our main focus has been to
automate the process of Internet-based
military training, the resulting multi-
agent framework could be used for any
multiuser Internet- or Intranet-based
application, which requires controlled
dissemination of structured informa-
tion. The system is not limited to
URLs, but is readily extensible to other
multimedia objects. Logobots are a step
in the military’s moves toward virtual
classrooms. u

About the Authors
Niraj Joshi is a gradu-
ate student pursuing a
master’s degree in
computer systems
engineering at Illinois
Institute of Technol-
ogy. His research inter-

Figure 2. Internal architecture of logobots.

termine a generic solution to this de-
sign trade-off problem. Based on em-
pirical tests with this implementation of
the logobots system, we limited the size
of the bins to 100 URLs each. We also
limited screening to exact URL matches
and excluded titles and descriptions
from the filtering process. The trade-off
between the size and complexity of
knowledge and search response times is
a problem that pervades the knowledge
engineering field.

A relatively minor but nevertheless
important challenge was the need to
work across “firewalls.” We wanted to
minimize use of the inefficient CGI
protocol and rely on socket communi-
cation primitives provided by Java.
However, for Java applets to communi-
cate with the applications running on
the central knowledge base server,
firewall administrators must provide
trusted ports. This was not a problem
in this particular military application,
but security will play an important role
in the design of any such agent system,
especially for military applications.

The last design issue concerns why
we chose the Internet and Java. When
we started creating this system, Java and

Intelligent Agents for Internet-Based Military Training

12 CROSSTALK The Journal of Defense Software Engineering March 1998

ests include intelligent agents, software
engineering, and database systems. He
has three years experience in design and
development of software systems based
on the Internet and databases. He has a
bachelor of engineering degree in com-
puter science from M.S. University in
Baroda, India.

Illinois Institute of Technology
Electrical and Computer Engineering Dept.
3301 S. Dearborn Street
Chicago, IL 60616-3793
Voice: 312-567-5074
Fax: 312-567-8976
E-mail: npjoshi@ece.iit.edu
Internet: http://www.ece.iit.edu/~npjoshi

V.C. Ramesh is an
assistant professor at the
Illinois Institute of
Technology. His re-
search interests include
intelligent agents, soft-
ware architectures, and

simulation. He has been the principal
investigator for several research projects
sponsored by various Department of De-
fense agencies, such as the Army Research
Office and the Office of Naval Research.
He has published more than 30 technical
articles. In 1996, the National Science
Foundation named him a recipient of the
CAREER award. He holds a doctorate in
electrical and computer engineering from
Carnegie Mellon University.

Illinois Institute of Technology
Electrical and Computer Engineering Dept.
3301 S. Dearborn Street
Chicago, IL 60616-3793
Voice: 312-567-3765
Fax: 312-567-8976
E-mail: vcr@iit.edu
Internet: http://agents.iit.edu/vcr

References
1. Genesereth, Michael and Steven

Ketchpel, “Software Agents,” Communi-
cations of the ACM, July 1994, pp. 48-53.

2. Maes, Pattie, “Agents That Reduce Work
and Information Overload,” Communi-
cations of the ACM, July 1994, pp. 30-
40.

3. Wooldridge, Michael and Nicholas
Jennings, “Intelligent Agents: Theory
and Practice,” Knowledge Engineering
Review, Vol. 10, No. 2, 1995, pp. 115-
152.

4. Franklin, Stan and Art Graesser, “Is It
an Agent, or Just a Program?” Proceed-
ings of the Third International Work-
shop on Agent Theories, Architecture,
and Languages, Springer-Verlag, 1996.

5. Talukdar, S., V.C. Ramesh, R. Quadrel,
and R. Christie, “Multi-Agent Organi-
zations for Real-Time Operations,”
Proceedings of the Institute of Electrical
and Electronics Engineers, May 1992.

6. Shaw, Mary and David Garlan, Software
Architecture: Perspectives on an Emerging
Discipline, Prentice-Hall, April 1996.

Software Training and Education

Software Technology
Support Center PSP Services

Personal Software Process (PSP)
services are available to Department of
Defense and other federal organizations
from the Software Technology Support
Center (STSC). These services include
PSP training for an organization’ s engi-
neers and its leaders. We also offer a
PSP adoption service that focuses on
helping an organization successfully
adopt and use the PSP.

All STSC PSP instructors have been
trained by the Software Engineering
Institute (SEI), and are SEI-authorized
PSP instructors.

For more information, visit our Web
site: http://www.stsc.hill.af.mil/
PSPpage

or call

Jim Van Buren
Voice: 801-775-3017 DSN 775-3017
Fax: 801-777-8069 DSN 777-8069
E-mail: vanburej@software.hill.af.mil
Les Dupaix
Voice: 801-775-5555 ext. 3088 DSN
775-5555 ext. 3088
Fax: 801-777-8069 DSN 777-8069
E-mail: dupaixl@software.hill.af.mil

Third IEEE International
Conference on Requirements
Engineering
Dates: April 6-10, 1998
Location: Marriott Hotel, Colorado

Springs, Colo.
Subject: Software requirements

engineering-related problems and
results, evaluations of promising
research and practice.

Sponsors: IEEE Computer Society
Technical Council on Software
Engineering, Fujitsu, MCI, and
INCOSE

Contact: Charlene Rauber-Svitek
crs@sei.cmu.edu; Internet:
http://www.cs.technion.ac.il/
~icre98/

International Information
Technology Quality Conference
Dates: April 13-17, 1998
Location: Orlando, Fla.
Theme: “Providing Proven Solutions

for the New Millenium”
Keynote Speakers: Phillip Crosby,

Tom DeMarco, William Perry, and
Howard Rubin

Sponsor: Quality Assurance Institute
Contact: Voice: 407-363-1111; Fax:

407-363-1112; Internet: http://
www.qaiusa.com

Tenth Annual Software
Technology Conference (STC ’98)
Dates: April 27 – May 2, 1998
Location: Salt Palace Convention

Center, Salt Lake City, Utah

Coming Events
Co-hosts: Ogden Air Logistics Cen-

ter Commander and the Software
Technology Support Center

Contact: See page 30, this issue.

International Conference on
Computer Languages 1998
Dates: May 14-16, 1998
Location: Loyola University, Chi-

cago, Ill.
Sponsors: IEEE Computer Society

Technical Committee on Com-
puter Languages, and ACM Special
Interest Group on Programming
Languages

Contact: http://www.math.luc.edu/
iccl98/

CROSSTALK The Journal of Defense Software Engineering 13March 1998

Moving from “What” to “How”
Although the Capability Maturity
Model (CMM) provides a powerful
improvement framework, its focus is
necessarily on “what” organizations
should do and not “how” they should do
it. This is a direct result of the CMM’s
original motivation to support the De-
partment of Defense acquisition com-
munity. We knew management should
set goals for their software work but we
also knew that there were many ways to
accomplish these goals. Above all, we
knew no one was smart enough to define
how to manage all software organiza-
tions. We thus kept the CMM focus on
goals, with only generalized examples of
the practices the goals implied.

As organizations used the CMM,
many had trouble applying the CMM
principles. In small groups, for example,
it is not generally possible to have dedi-
cated process specialists, so every engi-
neer must participate at least part time
in process improvement. We kept de-
scribing to engineers what they ought to
do and they kept asking us how to do it.
Not only did this imply a need for much
greater process detail, it also required
that we deal more explicitly with the real
practices of development engineers. We
needed to show them precisely how to
apply the CMM process principles.

Because software development is a
rich and sophisticated process, we real-

Three Dimensions of Process Improvement
Part II: The Personal Process

Watts S. Humphrey
Software Engineering Institute

Part I of this article (CROSSTALK, February 1998) described the Capability Maturity Model®, why it was developed,
and how it can help organizations improve their performance. Part II addresses the Personal Software Process (PSP)SM,
which shows engineers how to perform their tasks in an effective and professional way. In the final analysis, to have
high-performance software organizations, you must have high-performance software engineers working on high-perfor-
mance software teams. The objective of the PSP is to show software engineers how to use process principles in their work.
Part III of this article (April 1998 issue of CROSSTALK) describes the Team Software Process, which shows integrated
product teams how to consistently produce quality products under aggressive schedules and for their planned costs.

The SEI’s work is supported by the Department
of Defense. Capability Maturity Model and
CMM are registered with the U.S. Patent and
Trademark Office. Personal Software Process, PSP,
Team Software Process, and TSP are service marks
of Carnegie Mellon University.

Figure 1. The PSP process evolution.

ized a single set of cookbook methods
would not be adequate. We thus chose
to deal with fundamental process prin-
ciples and to show engineers how to
define, measure, and improve their per-
sonal work. The key is to recognize that
all engineers are different and that each
must know how to tune their practices
to produce the most personal benefit.

Changing Engineers’ Practices
Improvement requires change, and
changing the behavior of software engi-
neers is a nontrivial problem. The rea-
sons for this explain why process im-
provement is difficult and illustrate the
logic for the PSP.

The problems related to improving
the personal practices of software engi-
neers have long interested me, so after I
had been at the Software Engineering
Institute (SEI) for several years, I looked
for someone else to lead the CMM work
so I could address this issue. I decided to
first demonstrate how process improve-
ment principles could be applied to the
work of individual engineers. Over the
next several years, I wrote 62 small to
moderate-sized programs as I developed
as close to a Level 5 personal process as I
could devise.

The results were amazing. I became
more productive, the quality of my work
improved sharply, and I could make
accurate personal plans. The next step
was to demonstrate the effectiveness of
these methods for others. I first tried
meeting with engineering groups to
describe what I had done and to get
them to try it. Despite management

support, this was a dismal failure. One
laboratory manager even told his people
that it was more important for them to
use these methods than to meet their
project schedules. The engineers all said
they would do so, but none of them did.
The question was why not?

A Question of Conviction
Software engineers develop their per-
sonal practices when they first learn to
write programs. Since they are given
little or no professional guidance on how
to do the work, most engineers start off
with exceedingly poor personal practices.
As they gain experience, some engineers
may change and improve their practices,
but many do not. In general, however,
the highly varied ways in which indi-
vidual software engineers work are rarely
based on a sound analysis of available
methods and practices.

Engineers are understandably skepti-
cal about changes to their work habits;
although they may be willing to make a
few minor changes, they will generally

Software Engineering Technology

14 CROSSTALK The Journal of Defense Software Engineering March 1998

stick fairly closely to what has worked
for them in the past until they are con-
vinced a new method will be more effec-
tive. This, however, is a chicken-and-egg
problem: engineers only believe new
methods work after they use them and
see the results, but they will not use the
methods until they believe they work.

The Personal Software Process
Given all this, how could we possibly
convince engineers that a new method
would work for them? The only way we
could think of to change this behavior
was with a major intervention. We had
to directly expose the engineers to the
new way of working. We thus decided to
remove them from their day-to-day
environment and put them through a
rigorous training course. As shown in
Figure 1, the engineers follow prescribed
methods, represented as levels PSP0
through PSP3, and write a defined set of
10 programming exercises and five re-
ports [1]. With each exercise, they are

gradually introduced to various ad-
vanced software engineering methods.
By measuring their own performance,
the engineers can see the effect of these
methods on their work.

Figures 2 through 5 show some of
the benefits engineers experience [2, 3].
Figure 2 shows the average reduction in
size-estimating error for nearly 300 engi-
neers who took the PSP course and
provided data to the SEI. Their size-
estimating error at the beginning of the
course is indicated at the left of the
chart, and their error at the end of the
course is shown at the right. This shows

Figure 2. Size estimation results.

Figure 3. Effort estimation results.

that size-estimating errors averaged 63
percent with PSP0 (the first three pro-
grams) and 40 percent for PSP2 and
PSP3 (Programs 7, 8, 9, and 10). Note
that the PSP introduces a disciplined
estimating method (Proxy-Based Esti-
mating) with PSP1 (Program 4) [1].

Similarly, for time estimating, Figure
3 shows an improvement from a 55
percent error to a 27 percent error or a
factor of about two. As shown in Figure
4, the improvement in compile and test
defects is most dramatic. From PSP0 to
PSP3, the engineers’ compile and test
defects dropped from 110 defects per
1,000 lines of code (KLOC) to 20 de-
fects per KLOC, or over five times.
Figure 5 shows that even with their
greatly improved planning and quality
performance, the engineers’ lines of code
productivity was more or less constant.

Perhaps the most impressive PSP
change is in the way the engineers spend
their time. With Program 1, as shown in
Figure 6, this group of nearly 300 engi-

Figure 4. Quality results.

neers spent on average less time design-
ing their programs than they did on any
other task. They even spent more time
compiling than designing. At the end of
the course, they spent more time design-
ing than in any other technical activity.
We have been trying to get software
engineers to do this for years. Until they
can experience the benefits of more
thorough designs, they will likely con-
tinue to concentrate on coding, compil-
ing, and testing.

Industrial Results with the PSP
A growing number of organizations are
using the PSP, such as Baan, Boeing,
Motorola, and Teradyne. Data from
some early users clearly demonstrate the
benefits of PSP training [4]. Figure 7
shows data from a team at Advanced
Information Services (AIS) in Peoria, Ill.
They were PSP trained in the middle of
their project. The three bars on the left
of the chart show the engineers’ time
estimates for the weeks it would take
them to develop the first three compo-

Figure 5. Productivity results.

Figure 6. Effort distribution results.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 15March 1998

nents. For Component 1, for example,
the original estimate was four weeks, but
the job took 20 weeks. Their average
estimating error was 394 percent. After
PSP training, these same engineers com-
pleted the remaining six components. As
shown on the right, their average esti-
mating error was -10.6 percent. The
original estimate for Component 8, for
example, was 14 weeks and the work was
completed in 14 weeks.

Table 1 shows acceptance test data
on products from one group of AIS
engineers. Before PSP training, they had
a substantial number of acceptance test
defects and their products were uni-
formly late. After PSP training, the next
product was nearly on schedule, and it
had only one acceptance test defect.
Table 2 shows the savings in system
testing time for nine PSP projects. At the
top of the chart, system test time is
shown for several products that were
completed before PSP training. At the
bottom, system test time is shown for
products the same AIS engineers com-
pleted after PSP training. Note that A1
and A2 are two parts of the same prod-
uct, so testing for them was done to-
gether in one and one-half months.

Introducing the PSP
Although the PSP can be introduced
quickly, it must also be done properly.
First, the engineers need to be trained by
a qualified PSP instructor. The SEI
trains and authorizes PSP instructors
and provides limited on-site PSP train-
ing. There is also a growing number of
SEI-trained PSP instructors who offer
commercial PSP training (see http://
www.sei.cmu.edu).

The second important step in PSP
introduction is to train in groups or
teams. When organizations ask for vol-
unteers for PSP training, they get a
sparse sprinkling of PSP skills that will

Figure 7. Schedule estimating error.

process. We have found this to be a
problem even at higher CMM levels.
These are the reasons we are developing
the Team Software Process (TSP).

Part III of this article, which de-
scribes what the TSP is and how it helps
teams to work more effectively, will
appear in the April 1998 issue of
CROSSTALK. Although the TSP is still in
development, early industrial experience
demonstrates that it can substantially
improve the performance of integrated
product teams. u

About the Author
Watts S. Humphrey is a
fellow at the SEI of
Carnegie Mellon Uni-
versity, which he joined
in 1986. At the SEI, he
established the Process
Program, led initial

development of the CMM, introduced the
concepts of Software Process Assessment
and Software Capability Evaluation, and
most recently, the PSP and TSP. Prior to
joining the SEI, he spent 27 years with
IBM in various technical executive posi-
tions, including management of all IBM
commercial software development and
director of programming quality and
process. He has master’s degrees in physics
from the Illinois Institute of Technology
and in business administration from the
University of Chicago.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Voice: 412-268-6379
E-mail: watts@sei.cmu.edu

References
1. Humphrey, W.S., A Discipline for Soft-

ware Engineering, Addison-Wesley, Read-
ing, Mass., 1995.

2. Hayes, Will, “The Personal Software
Process: An Empirical Study of the
Impact of PSP on Individual Engineers,”
CMU/SEI-97-TR-001.

3. Humphrey, W.S., “Using a Defined and
Measured Personal Software Process,”
IEEE Software, May 1996.

4. Ferguson, Pat, Watts S. Humphrey,
Soheil Khajenoori, Susan Macke, and
Annette Matvya, “Introducing the Per-
sonal Software Process: Three Industry
Case Studies,” IEEE Computer, Vol. 30,
No. 5, May 1997, pp. 24-31.

System test time before PSP training
Project Size Test Time

A1 15,800 LOC 1.5 months
C 19 requirements 3 test cycles
D 30 requirements 2 months
H 30 requirements 2 months

System test time after PSP training
Project Size Test Time

A2 11,700 LOC 1.5 months
B 24 requirements 5 days
E 2,300 LOC 2 days
F 1,400 LOC 4 days
G 6,200 LOC 4 days
I 13,300 LOC 2 days

Table 2. System test time savings.

Table 1. Acceptance test improvement.

generally have no impact on the perfor-
mance of any project.

Third, effective PSP introduction
requires strong management support.
This, in turn, requires that management
understand the PSP, know how to sup-
port their workers once they are trained,
and regularly monitor their perfor-
mance. Without proper management
attention, many engineers gradually slip
back into their old habits. The problem
is that software engineers, like most
professionals, find it difficult to consis-
tently do disciplined work when nobody
notices or cares. Software engineers need
regular coaching and support to sustain
high levels of personal performance.

The final issue is that even when a
team of engineers are all PSP trained and
properly supported, they still have to
figure out how to combine their per-
sonal processes into an overall team

Not Using Months Acceptance
PSP KLOC Late Test Defects
1 24.6 9 N/A
2 20.8 4 168
3 19.9 3 21
4 13.4 8+ 53
5 4.5 8+ 25

Using PSP
1 22.9 1 1

Three Dimensions of Process Improvement: Part II: The Personal Process

16 CROSSTALK The Journal of Defense Software Engineering March 1998

Given adequate management
support, Inspection can quickly
be turned from the initial chaos

phase (20 or more major defects per
page) to relative cleanliness (two or
fewer major defects per page at exit)
within a year. To understand Inspection,
two points must be clear:
• Inspection, as I define it (shown with

a capital “I”), consists of two main
processes: the Defect Detection Pro-
cess (DDP) and the Defect Preven-
tion Process (DPP) [2].

• A major defect (“major”) is a defect
that, if it is not dealt with at the
requirements or design stage, will
probably have an order-of-magnitude
or larger cost to find and fix when it
reaches the testing or operational
stages. On average, the find-and-fix
cost for a major defect is one work
hour upstream but nine work hours
downstream.
DDP finds up to 88 percent of

existing major defects in a document on
a single pass. This alone is important,
but DDP actually achieves greater ben-
efit by teaching software engineers.
They go through a rapid, individual
learning process, which typically re-
duces the number of defects they make
in their subsequent work by two orders
of magnitude.

In addition, DDP can and should be
extended to support continuous process
improvement. This is achieved by in-
cluding the associated DPP, which is
capable of at least 50 percent (first year,
and first project used on) to 70 percent
(second or third year) defect frequency
reduction, and over 90 percent in the
longer term. It has also shown at least a
13-to-1 ratio return on investment
(ROI). It is the model for Software Engi-
neering Institute (SEI) Capability Matu-
rity Model (CMM) Level 5.

Raytheon provides a good case study.
In six years (end 1988 to end 1994),
using DDP combined with DPP,
Raytheon reduced rework costs (costs of
dealing with preventable errors) from
about 45 percent to between 5 percent
and 10 percent, and had a 7.7-to-1 ROI.
They improved software productivity by
a factor of 2.7-to-1, reduced negative
deviation from budget and deadlines
from 40 percent to near zero, and re-
duced bug density by about a factor of
three [5]. Additional detailed costs and
benefits can also be found in [2, 3].

Improving Inspections
Following are some key tips about how
to improve your Inspection process and
how to begin to achieve the kind of
results cited above.

Know Your Purpose for Using
Inspection
• Don’t misuse Inspection as a “clean-up”
process. Use it to motivate, teach, measure,
control quality, and to improve your pro-
cesses. Most people seem to think Inspec-
tion is for cleaning up bad work, bugs,
and defects. However, the greatest pay-
back comes when Inspection improves
future work, i.e., reduces defect injec-
tion. Ensure that your Inspection process
fully supports the aspects of teaching and
continuous process improvement.

For continuous process improve-
ment, integrate DPP into conventional
Inspections (see [2] for specific details).
DPP needs to be practiced early. CMM
Level 5 is too important to be put off
until later—you need to do it from the
beginning.
• Plan Inspections to address your Inspec-
tion purposes. I have listed over 20 dis-
tinct purposes for using Inspection, e.g.,
document quality, removing defects, job
training, motivation, helping a docu-
ment author, improving productivity,

and reducing maintenance costs [3, 5].
Each Inspection will address several of
these purposes to varying degrees. Al-
ways be aware which purposes are valid
for your current Inspection, and for-
mally plan to address them, e.g., by
choosing checkers with relevant skills
and giving them appropriate checking
roles.

Measure Inspection Benefits
• Measure your benefit from using Inspec-
tions. Inspection should always be highly
profitable, e.g., 10-to-1 ROI. If not, it is
time to adjust the Inspection process or
stop it. Benefits to be measured include
rework costs, predictability, productivity,
document quality, and ROI [1].

Make Intelligent Decisions on What
You Choose to Inspect
• Use Inspection on any technical docu-
mentation. Most people think Inspection
is about source code inspection. It started
there in the early 1970s; however, once
you realize that Inspection is not (in the
medium term) a clean-up process, you
can use it to measure and validate any
technical documentation—even techni-
cal diagrams.
• Inspect upstream first. By the end of the
1970s, IBM and Inspection-method
founder Michael Fagan recognized that
defects and the profitable use of Inspec-
tion lay upstream in the requirements
and design areas. Bellcore found that 44
percent of all bugs were due to defects in
requirements and design reaching the
programmers [4]. If your systems start
with contracts, management and mar-
keting plans, you must start your inspec-
tion activity there, where the problems
start.

One of the most misunderstood
dictums to come from the early inspec-
tions was “no managers.” Wrong! That
was in the days when Inspection dealt

Optimizing Software Inspections
Tom Gilb

Independent Consultant

Software Inspections are now widely known to the software industry, but most organizations do not
make the most of them. This is because many people misunderstand and misinterpret Inspection.
This article aims to provide some direction as to how to get the most value from your Inspections.

CROSSTALK The Journal of Defense Software Engineering 17March 1998

only with source code. Management
inspections may be the most useful you
will ever do. I have extremely positive
experiences using Inspection with top
managers on contracts, marketing, and
product development plans.
• Check the significant portions of the
material—avoid checking commentary.
Most organizations waste time checking
nonsignificant document areas that do
not translate into a final product; defects
in such areas cannot trigger major con-
sequences. The result of this indiscrimi-
nate checking of trivia, at an optimum
rate, is 90 percent minor defects and a
90 percent waste of time. It is like check-
ing comments for 90 percent of the time
instead of real code.

We have found that it pays to have a
general technical documentation rule
that technical authors must distinguish
between text (or diagrams) that can
translate to serious downstream costs
(noncommentary or “meat”) and less-
important areas (commentary or “fat”).
This distinction can be done, for ex-
ample, by using italics for the fat. Some
of our clients have even created Mi-
crosoft Word macros to count the vol-
ume of noncommentary text and print it
on the first page. Of course, the checker
is allowed to scan and reference the
commentary words but is not obligated
to check them against all sources, rules,
and checklists. It is not worth it.
• Use sampling to understand the quality
level of a document. It is neither necessary
nor desirable to check all pages of long
documents. Representative samples will
probably tell you whether a document is
clean enough to exit at, for example, 0.2
majors per page maximum remaining.

The main purpose of Inspection is
economic—to reduce lead time and
people costs caused by downstream
defects—not primarily to clean bugs. As
in Harlan Mills’ IBM “Cleanroom”
method, bugs should be cleaned up or
avoided using disciplines such as Watts
Humphrey’s Personal Software Process
(PSP), Structured Programming, and
Continuous Improvement and Verifica-
tion. If all this works as it should, clean-
ing is unnecessary, and sampling tells
you if it is economically safe to release the
document. Perfection is not required—

it costs infinite resources and is danger-
ous as a guiding concept.
• Inspect early and often while a document
is being written. Inspection after a large
(100 pages or more) technical document
has been “finished” is a common, bad
idea. If the process that generates the
document is faulty, discover it early and
put it right. This saves time and corrects
bad processes before they damage your
schedule too much.

Focus on Finding the Majors
• Check at your organization’s optimum
rates to find major defects. This is the big
one! Most everybody, including so-called
teachers of Inspection, manage to miss
this point. Or worse, their suggested
checking rates are 10 times optimum
speed. Optimum checking rate is not
optimum reading rate. Checking in real
Inspections involves checking a page
against all related documents. This can
involve up to 10 or 20 source documents
of large size, checklists, and standards.
You have to check a single line against
many sources, and it takes time.

Adequate Inspection statistics can
prove your employees have a clear, dra-
matic, and consistent optimum checking
rate on specific document types. This
ranges between 0.2 and 1.8 pages of 300
noncommentary words per checking
hour. At Raytheon, it was about 20 plus
or minus 10 lines per hour (0.3 pages).
Unfortunately, in spite of their own data,
Raytheon suggested rates of about 100
to 250 lines per hour. This was probably
because they had finite deadlines and did
not understand sampling.

As the checking speed moves toward
an optimum speed for effectiveness of
finding major defects, the curve for
optimum checking rate moves dramati-
cally upward in terms of major defects
identified per logical page. The opti-
mum may seem slow, but considering
the amount of checking you have to do,
it is fast. The main point is that there is a
best speed at which to check, and you
will be operating at low checking pro-
ductivity if you fail to heed it.

Note that the optimum checking rate
applies both to the checking carried out
before and to the optional checking car-
ried out during the logging meeting.

This second check will produce roughly
an additional 15 percent defects. You do
not need this extra checking if the docu-
ment is found clean enough to exit as a
result of initial checking sampling or if it
is so polluted that you have to do a ma-
jor rewrite anyway.
• Define a major defect as “possible larger
costs downstream.” It does not matter if a
defect is not precisely a bug or if it is
visible to a customer. If it can potentially
lead to significant costs if it escapes
downstream, classify it as a major and
treat it with due respect.

You can help people identify majors
by using checklists that specify how to
find them. (Note: checklists are only
allowed to help interpret the “rules,”
which are the official standards for writ-
ing a given document, and which define
defects). Use symbols: “M” for major
and “m” for minor after the checklist
questions or rule statement. I also often
find it useful to use “S” for super major
or showstopper (a defect where the
downstream effect could be an order of
magnitude bigger than an average ma-
jor). Super majors can be highlighted for
management attention.
• Log only major defects. This helps avoid
the “90 percent minor” syndrome that
often hampers Inspection. Employees
waste time identifying 90 percent minor
defects unless strongly redirected. There
are 18 tactics that shift your focus from
minor to major defects ([2], pp. 75-76).
For example, allow only ideas for finding
majors onto the rules and checklists, log
only majors at a meeting, and calculate
ROI for Inspections only based on ma-
jors. A clear message must be given to
not waste time on minor defects.

Apply Good Practice When Leading
Inspections
• Use serious entry conditions, e.g., nu-
meric quality of sources. We are in such a
big hurry to waste our own time. Many
do not have the discipline to set up and
respect entry conditions that prevent
wasting time—but you must.

One of the most important entry
conditions is to mandate the use of up-
stream source documents to inspect a
“product” document. It is a mistake to
try to use the experts’ memory abilities

Optimizing Software Inspections

18 CROSSTALK The Journal of Defense Software Engineering March 1998

instead of updated, Inspection-exited
source documents. It is a farce to use
source documents with the usual uncon-
trolled, uninspected, unexited, 20 or
more major defects per page to check a
product document. It is silly to allow a
product document author to use a bad
quality source document to generate a
product. Inspection does not have to
repeat that silliness.

You can ascertain the state of a
source document through inexpensive
sampling. A half day on a few pages is a
small price to pay to know the state of a
document that could destroy the quality
of all your work and your project.

Another serious entry condition is to
do a cursory check on the product docu-
ment and return it to the author when it
is anything less than a quality piece of
work bursting at the seams to exit (based
on a cursory check that reveals few re-
maining defects). For example, if while
planning the Inspection, the team leader
performs a 15-minute cursory check
that shows up a few major defects on a
single page, it is time for a word with
the author in private. Pretend the docu-
ment was never seriously submitted.
Certainly do not waste the time of your
team to confirm shoddy work.

In short, learn which entry condi-
tions you need to set, then take them
seriously. I would like to see manage-
ment lead by understanding the impor-
tance of this instead of ignorantly
thwarting engineers’ attempts to do
reasonable work by insisting Inspec-
tions proceed when the entry condi-
tions have not been met.
• Make sure you have excellent standards
to identify defective practices. Inspection
requires that good work standards be in
place. Standards provide the rules for the
author when writing technical docu-
ments and then for the Inspection pro-
cess to subsequently check against. Stan-
dards must be built by hard experience;
they need to be brief and to the point,
be monitored for usefulness, and must
be respected by the troops. They must
not be built by outside consultants or
dictated by management. They must be
seen as the tool to enforce the necessary
lessons of professional practice on the
unwary or unwilling.

• Check against source and kin documents;
check them for defects, too. Because of
potentially poor quality control practices
and craftsmanship, and because Inspec-
tion is imperfect on first pass (30 percent
to 80 percent effective), focus on major
defects that persist in source documents
used to produce the document under
Inspection, and in kin documents de-
rived from the same source documents.
For example, if a functional specifica-
tion was the product document requir-
ing Inspection, there should be a re-
quirements document as one of the
source documents and a testing docu-
ment as one of the kin documents.

Most people overfocus on the prod-
uct document, i.e., the document you
are inspecting and evaluating for exit.
You should probably be finding 25 per-
cent of your total defects external to the
product document.
• Use the optimum number of people on a
team to serve the current purpose of Inspec-
tion, e.g., effectiveness, efficiency, and
training. For 13 years, one large U.S.
telecommunications company had 12 to
15 people on each inspection team be-
cause each “had” to be there to protect
territorial interests. There seemed to be
no motivation to cut these costs.

The number of people who are
needed on a specific Inspection team is a
function of your purposes. Monitor the
results of varying team sizes to discover
your optimum. If you measure your own
Inspection experiences, you will find
that effectiveness at finding major de-
fects uses four to six people, efficiency
(effect over cost) needs two to four
people, and only teaching as a purpose
justifies larger numbers.
• Allocate special defect searching roles to
people on the team. Each person on an
Inspection team should be finding differ-
ent defects. Much like a coach on a ball
team, the Inspection team leader should
assign specialist roles to team members,
e.g., identify time and money risks,
check against corporate standards for
engineering documentation, and check
security loopholes.
• Use checking data (such as pages checked,
majors found, time used, and checking
rate) from individual checkers to decide
whether it is worth holding a logging meet-

ing. Older types of inspection plunge
into the logging meeting without fore-
thought, and consequently waste a lot of
time. We have developed a process of
logging meeting entry evaluation before
going ahead with the logging meeting.
We collect data from checkers about
checking rates and major-issue density.
(To avoid personal conflict, issues—not
defects—are logged during the logging
meeting. An issue may or may not be-
come a defect.) Based on this data, we
make a series of decisions about the
logging meeting. Most critical is whether
a meeting is necessary. Other decisions
include whether to log minors, whether
to continue checking, and what is the
likely optimum checking rate.
• Use the individual checkers’ personal
notes instead of proper meeting defect logs
when the major issue volume is (nonexit
level) high, or when there is a large num-
ber of minor defects. Checkers should not
be required to use any particular method
to make notes during checking. But
most of them mark a paper document
(some use an electronic document) with
an underline or circle, or they highlight
offending words. It is important that
they also note, against offending words,
exactly which rule was broken (the issue).
To note major or minor is less important
if all issues found are majors.

Whenever there is a higher volume of
issues than would indicate allowable
exit, you can happily, with author agree-
ment, return these “scratchings” to the
author rather than pedantically log them
like good bureaucrats. Authors need to
rewrite and resubmit in these cases,
using this information to correct their
work processes (usually to take sources
and rules more seriously).
• At logging meetings, avoid discussions
and avoid suggesting fixes. Inspection is
not for talkers and quibblers—it is for
professionals committed to making
maximum, meaningful progress on the
project. You can have a good time, but
not by idle gossip and insults. You are
there to measure, not to wear each other
out, or get drowned in unprofitable
bureaucratic games.
• Use serious exit conditions, e.g., “maxi-
mum probable remaining major defects per
page is 0.2 for exit.” Exit conditions, if

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 19March 1998

correctly formulated and taken seriously,
can be crucial. It is ridiculous and sad to
have the customary “vote” to accept a
document when the logged defects are
fixed—this completely ignores the
known factor of remaining unfound
defects, which is computable and verifi-
able from past data and experience.

Remember that Inspection processes,
as other testing processes, have a maxi-
mum effectiveness for a single pass in the
range of 30 percent to 88 percent of
existing defects. If the maximum prob-
able remaining defect density is a high-
quality low count, e.g., 0.2 majors per
page, it matters little if the detected
defects are removed; the document is
clean enough (economically speaking) to
exit without fixing those identified.

If defect density is high, e.g., 20 or
more majors per page (quite common),
undetected defects, at say 50 percent
effectiveness, are more than enough to
make exit uneconomical. Ten majors
remaining per page in a 100-page docu-
ment would result in 9 x 10 x 100 hours
of additional project work to clean them
up by testing and discovery in the field.
It costs an order of magnitude less to
find them now. Admittedly, it is only the
lesser of two evils—you should wish to
prevent them using DPP rather than
have to clean them up early using DDP.

Management must understand the
large-scale economics of this, making
clear policy about the levels of major
defects per page that will be allowed to
escape ([2] pp. 430-431). The conse-
quences of poor policy here should be
deducted from management’s pay!

Ensure You Have Provided
Adequate Training and Follow-up
• Give Inspection team leaders proper
training, coaching after initial training,
formal certification, statistical follow-up,
and if necessary, remove their “license to
inspect.” Proper training of team leaders
takes about a week (half lectures and half
practice). Formal Inspection team leader
certification (an entry condition to an
Inspection) should be similar to that for
pilots, drivers, and doctors—based on
demonstrated competence after training.

Leaders who will not professionally
carry out the job, even if it is because

their supervisor is pressuring them to cut
corners, need to have their license re-
voked. If you take professional leader-
ship seriously, your players will take
Inspection seriously. Ensure there is an
adequate number of trained people to
support your Inspections—at least 20
percent of all professionals. Some clients
train all of their engineers.

Give Visibility to Your Inspection
Statistics and Support
Documentation
• Put your Inspection artifacts on a com-
pany Web site. If you have an Intranet,
all relevant Inspection artifacts, stan-
dards, experiences, statistics, and prob-
lems should be placed on a corporate-
wide site as soon as possible.
• Build or buy an automated software tool
to process Inspection basic data. Use auto-
mated software tools to capture sum-
mary data and to present trends and
reports [7]. Inspection quickly generates
a lot of data that is fundamental and
useful to managing the process. It is vital
that good computer support be given
early so the process owners and manage-
ment take the data seriously and so that
early champions are not overwhelmed.

The key distinction between Inspec-
tions and other review processes is the
use of data to manage them. For ex-
ample, optimum checking rates must be
established early and updated as they
change through continuous improve-
ment. It also is vital to statistically see
the consequences of inadequate exit
levels (too many major defects floating
downstream), which then are caught
with expensive testing processes. Locally
made spreadsheet software is a good
start-up tool.
• Plan Inspections well using a master
plan. We have developed a one-page
master plan ([2] p. 401) that goes far
beyond the conventional “invitation.”
We document the many supporting
documents needed, assign checkers their
special defect-searching roles, and care-
fully manage rates of checking and the
total checking time needed. We establish
the formal purpose(s) of this specific
Inspection, which vary. We establish a
team numeric stretch goal for this In-
spection and a strategy to help attain it.

A good master plan avoids senseless
bureaucracy and lays the groundwork for
intelligent Inspections.

Continuously Improve Your
Inspection Process
• Use Defect Prevention Process on the
Inspection process. Finally, recognize that
systematic continuous improvement of
the Inspection process is necessary. Ini-
tially, this is required not only to im-
prove the process but also to learn the
Inspection process properly and to tailor
it to your organization. u

Acknowledgment
I thank Lindsey Brodie for her editing
and assistance on this article.

About the Author
Tom Gilb is a freelance
consultant. Born in
California, he has been a
resident of Norway since
joining IBM, there, in
1958. He has the De-
partment of Defense as

his favorite worthy cause.

E-mail: Gilb@ACM.org

References
1. Raytheon Defense Electronics, http://

www.sei.cmu.edu/products/publica-
tions/95.reports/95.tr.017.html.

2. Gilb, T. and D. Graham, Software Inspec-
tion, Addison-Wesley Longman, Lon-
don, England, 1993.

3. http://www.stsc.hill.af.mil/SWTesting/
gilb.html.

4. Pence, J. L. Pete and Samuel E. Hon III,
Bellcore, Piscataway, N.J., “Building
Software Quality into Telecommunica-
tions Network Systems,” Quality Progress,
October 1993, pp. 95-97.

5. The Raytheon Report, http://
www.sei.cmu.edu/products/publica-
tions/95.reports/95.tr.017.html. Also
see http://www.Result-Planning.com
and http://www.stsc.hill.af.mil/
SWTesting/gilb.html.

6. A set of slides that correspond to this
article should be at the Washington,
D.C. Spin site under “Old Lectures,”
http://www.software.org/DCSpin.

7. Software Development Technologies,
Software Inspections Automation, Ed-
ward Kit, sdt@sdtcorp.com, http://
www.sdtcorp.com.

Optimizing Software Inspections

20 CROSSTALK The Journal of Defense Software Engineering March 1998

A Software Development Process for COTS-Based
Information System Infrastructure: Part 1

Greg Fox, TRW Systems Integration Group
Karen Lantner, EDS

Steven Marcom, TRW Information Services Division

The Infrastructure Incremental Development Process fills two gaps within the realm of software devel-
opment processes: It provides a programmatic, prototype-driven, but carefully controlled approach to
commercial-off-the-shelf selection and integration, and it provides a process that specifically addresses
development not of applications but of the infrastructure of a large distributed information system.

The level of abstraction at
which the software developer
works has changed markedly

throughout the last 40 years. Early pro-
grammers used ones and zeros to control
the electronic switches within comput-
ers. That technology was followed by
procedural languages that, from the
programmer’s view, removed much of
the physical housekeeping associated
with the specific design of the computer.
In recent years, an even higher level of
abstraction has appeared: the integration
of prepackaged commercial-off-the-shelf
(COTS) software into system designs. In
addition, the domain of software devel-
opment has become segmented into
different layers. For example, applica-
tion-level software development can be
distinguished from infrastructure-level
software development.

The Emerging Divide in System
Functionality
The value of layering in software archi-
tecture and implementation is an estab-
lished concept. Key to the layering
model is the idea that through use of
defined interfaces between layers, the
impact of changes in any given layer can
be largely isolated from the other layers.

The concept of a services layer and of
specialized software in the system acting
as service providers has continued to

grow from the simple beginnings in the
operating system to become a funda-
mental architectural concept in modern
system design. As reuse and portability
of software applications across different
vendor hardware platforms become an
increasingly important goal, a more
sophisticated model of service layers and
service providers has emerged. The open
systems movement cites application
portability across computing platforms
as a major economic driver [1, 2].

The National Institute of Standards
and Technology (NIST) Application
Portability Profile (APP) [3] provides
one convenient model to define system
layers and services that support portabil-
ity. This model, along with standards,
helps achieve application portability by
guiding designers who plan to code new
information systems in their entirety and
by guiding selection of available software
computing components from those
available in the marketplace.

Modern information system design
models separate the business-specific
application software layer in a system
from the technology-based infrastructure
software layer. An illustration of this
approach is the information engineering
method of separating business system
architecture from technical architecture,
which contains the computing infra-
structure [4]. This separation into soft-
ware layers, which is less formally ad-
dressed in other design methods,
recognizes that change and evolution in
information systems are driven by two
independent forces: change in business
requirements and change in technology.
Decoupling the impact of business rule
change from change in technology de-

creases the total amount of system re-
work necessary to support system evolv-
ability over time. This decoupling is
effectively implemented by modeling the
infrastructure software using the concept
of services layers and service providers.

Views of Infrastructure
There are two ways to look at the infra-
structure. One view is the services view
of infrastructure as seen by business
application developers. It includes Hu-
man Computer Interface, Systems Man-
agement, Security, Work-Flow Manage-
ment, Telecommunications, Data
Interchange, Transaction Processing,
Data Management, and Operating Sys-
tems. This grouping of infrastructure
services was derived from the NIST APP.
Infrastructure services are delivered to
the applications through an application
programming interface (API).

The second view is the structural
view, which includes the kinds of com-
ponents infrastructure developers use to
construct their view of the infrastruc-
ture: a set of connected software, net-
work, and hardware components. These
include developed software components,
COTS software components, communi-
cations circuits, local area networks,
special purpose servers, general purpose
servers, workstations, and laptops.

An additional set of functionalities,
treated as part of the infrastructure dur-
ing the development process, are the
technical applications needed to operate
the system. These applications neither
implement business functionality nor
provide services to the business applica-
tion. They are, for example, the tools for
system security administration, database

© 1997 IEEE. This material is adapted and re-
printed, with permission, from a paper presented
at the IEEE/SEI-sponsored Fifth International
Symposium on Assessment of Software Tools and
Technologies, Pittsburgh, Pa. held June 3-5,1997,
pp. 133-142. Part 2, which will appear in the
April 1998 issue of CROSSTALK, describes real-world
applications of the IIDA model and examines the
practical lessons learned and pitfalls encountered.

CROSSTALK The Journal of Defense Software Engineering 21March 1998

administration, system configuration
control, software distribution, and, in
general, the tool-set for enterprise-level
systems management. Other infrastruc-
ture services are also used internal to the
infrastructure but are not visible to
business applications or end users. For
example, a remote data access protocol is
a level of service provided between infra-
structure components that is used to
construct a mechanism to access data: It
is not directly visible to business applica-
tions or end users.

Infrastructure services provide func-
tionality that the application developer
can access external to the application
and, therefore, does not develop as part
of the application. Economy of scale is
achieved through common use of tech-
nical services by application develop-
ment projects across the enterprise. Pro-
grammers can access infrastructure
services without regard to how underly-
ing infrastructure services have been
implemented using a properly designed
API. By allowing application and infra-
structure development to be separate
and independent, infrastructure en-
hancements, e.g., increased performance,
additional services, and new computing
platforms, can be made with minimal
effects on application development.

The COTS Challenge for
Infrastructure
Although distributed systems (popularly
described as client-server or networked
systems) dominate today’s computer
system design, they still have the charac-
ter of adolescence. We are in the middle
of a dramatic and somewhat uncon-
trolled expansion and evolution of
standards for COTS software products
for distributed systems. COTS products
provide portions of needed supporting
technical functionality to turn collec-
tions of computing platforms into uni-
fied, distributed computing environ-
ments. Available COTS software
products offer varying degrees of stan-
dards compliance, interoperability, het-
erogeneous computing platform sup-
port, security functionality, performance
efficiency, and distributed environment
transparency for applications using their
services.

Two separate panels at the 1995
Software Engineering Institute/Micro-
electronics and Computer Technology
Corporation Symposium on “The Use
of COTS in Systems Integration” con-
cluded that “there is a need for process
definitions for COTS usage,” [5] and
“new lifecycle models for COTS integra-
tion projects are needed.” [6] Currently,
documented software development
lifecycle processes provide little practical
guidance to developers to achieve the
advantages of COTS software or to assist
in the selection of specific products from
the myriad available. COTS product
selection and integration are complicated
by an intrinsic set of special characteris-
tics: incompatibility, inflexibility, com-
plexity, and transience.

Development Lifecycle Process
Impact
The special characteristics of COTS
software integration change the empha-
sis in the classic waterfall lifecycle stages
of planning, definition, analysis, design,
construction, integration and test,
implementation, deployment, and main-
tenance. COTS-based development
differs from business application-ori-
ented development in that the COTS
selection process must occur early in the
lifecycle. COTS evaluation and selection
become a critical part of the early analy-
sis process rather than a peripheral activ-
ity within the later design process. The
challenges of COTS incompatibility,
inflexibility, complexity, and transience
must be addressed in the selection pro-
cess because the infrastructure will ulti-
mately consist of a suite of COTS prod-
ucts that must operate in harmony.

In addition, since COTS software
does not require coding but does re-
quire integration with other compon-
ents, it starts the lifecycle as a partially
developed component. The design,
construction, and integration and test
development stages must be recast to
accommodate early COTS software
integration and testing as well as to
develop glue code: interface software,
configuration files, scripts, utilities, and
data files required to make the COTS
software deliver its intended function-
ality. The proper development and

testing of the glue code to make a
COTS package work may not be a
trivial undertaking. For more complex
COTS software, the development of
glue code might need to be treated in
the same manner as the development of
a traditional custom-coded software
module.

When a COTS product enters the
development process, the first task is to
test and integrate it into the system. This
activity starts early in the development
process. Waiting until late in the devel-
opment process to test and integrate
COTS products, particularly those that
are complex, will not give adequate time
to master all their intricacies and com-
plexities. COTS product testing and
integration activities must be interwoven
into more of the development process
stages.

COTS Incompatibility
Many vendors do not develop their
products along the lines of the layering
models discussed earlier. As this is being
written, no single commercially available
software product or product family can
provide all the infrastructure services
needed for an enterprise-level infor-
mation system of substantial size or
complexity. The problem to be solved in
system design and development is to
select a compatible set of software prod-
ucts that can be integrated together and
augmented by glue code to produce a
complete set of services.

In an ideal world, a set of products
that provide all the needed infrastructure
services would simply “snap together”
like the pieces in the puzzle shown in
Figure 1. In the real world, this is not
the case: when put together, COTS
pieces have gaps and overlaps. At any
point in time, the set of services that a
system designer can specify as useful
exceeds what is available in mature prod-
ucts in the marketplace. The resulting
gaps can be overcome in two ways. One
is by traditional design and development
of custom infrastructure software added
around the commercially available prod-
ucts selected (either adding layers be-
tween the COTS-based infrastructure
and the applications or adding custom
service-provider software that is concep-

A Software Development Process for COTS-Based Information System Infrastructure: Part 1

22 CROSSTALK The Journal of Defense Software Engineering March 1998

tually parallel to the COTS software).
Another way is by leaving it to the appli-
cation designers to deal with at the appli-
cation level.

Overlaps between products can cause
a greater system design problem than
gaps. Commercial software suppliers are
driven much more by a desire to capture
larger segments of the marketplace than
they are by adherence to recommended
system implementation layering models.
For example, boundaries between data-
base access, transaction processing, and
work-flow management software prod-
ucts begin to overlap and blur as each
vendor community expands its product’s
features in pursuit of increased market
share.

This expansion in features is driven
by requests for increased functionality by
the installed base, not by the boundaries
defined in layering models. The net
result is that certain products and prod-
uct sets do not work synergistically with
other products; yet, none of the products
on its own is complete enough to pro-
vide all of the necessary functionality.
Selection of a specific product that pro-
vides a certain set of services often pre-
cludes selection of another functionally
complementary product.

COTS Inflexibility
The inflexibility characteristic of COTS
software can cause both design and inte-
gration difficulties. Unlike custom-
developed software, when a piece of
commercial software exhibits a behavior
not expected by the system designer, the
developer cannot merely change the
behavior of that software but must either

that just because the system has been
integrated and tested in a test facility
does not mean that it can be quickly
made operational at a production loca-
tion. The tailoring and tuning process
for each location’s configuration can
require days, weeks, or months.

COTS Transience
COTS software products are character-
ized by periodic updates. Updates might
add functionality but are often incom-
patible with other system components.
On the other hand, remaining with
older versions of COTS products might
cause future interoperability problems
with upgrades to other COTS software.
COTS software updates, particularly
operating system updates, must always
be evaluated for insertion into the sys-
tem, since critical vendor maintenance
and support for older versions often
ceases. Management, cost, and technical
factors in the transition to new COTS
software versions can be formidable,
particularly in a system with dozens of
interrelated products upgraded by their
vendors on different calendar cycles.

The Infrastructure Incremental
Development Approach (IIDA)
The development of a COTS-based
technical infrastructure demands an
approach that is fundamentally different
from traditional approaches used for
business-oriented applications: one that
is heavily prototype-oriented, emphasizes
testing, and evolves through multiple
iterations. The IIDA is a tailored
lifecycle that preserves the benefits of
existing structured processes for software
development while adapting to the par-
ticular characteristics of integrating
COTS products. The IIDA is a combi-
nation of the classical waterfall develop-
ment model [7] and the spiral develop-
ment model [8], but the emphasis is on
establishing compatibility and complete-
ness rather than on component-level
specifications.

Overview of IIDA
The IIDA is an iterative and incremental
approach to infrastructure development
where each version of the infrastructure
is an increment that is integrated into

Figure 1. Generic information system
infrastructure service.

replace the software, work around the
unexpected behavior, or change require-
ments. Understanding the behavior of an
unmodifiable software component is a
different process than specifying the
behavior of a component to be
constructed. Most documented software
development methods take the latter
approach and do not address the former.

COTS Complexity
The complexity characteristic of many of
today’s advanced COTS software prod-
ucts causes distortions in the traditional
development process time line. The
flexibility and tailorability of product
families like transaction monitors, work-
flow managers, and system management
frameworks mean a significant education
investment. The investment must be
made upfront before the product can be
fully evaluated for selection, and in cases
when the product proves unsuitable, the
investment might have a zero net return.
Experience shows that the selection
process for one major product can re-
quire three to six months of calendar
time, multiple engineers and program-
mers, access to sophisticated suites of
hardware and software environments,
and will likely entail the purchase of
vendor-provided training classes.

The more complex COTS software
products are tailorable and scalable to
multiple hardware configurations, soft-
ware environments, and workload
environments. To achieve this flexibility,
they contain from dozens to hundreds of
adjustable parameters (or “knobs”). Each
of these must be set for the specific sys-
tem configuration. If the system is being
built for deployment in multiple loca-
tions with different hardware config-
urations or workload environments, the
COTS software parameters might need
to be tuned for each installation. This
can be a complex task requiring product
expertise, experience with the behavior
of the integrated system, and, poten-
tially, support from analytic modeling
efforts. Software configuration files for
each location might need to be tailored
using the information developed during
system integration. Not only does this
require additional development effort,
the scheduling process must recognize

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 23March 1998

the existing infrastructure baseline.
Within each version, development pro-
ceeds in time-sequenced stages with
iterative feedback to preceding stages
(see Figure 2).

The target infrastructure is the long-
term vision for the infrastructure. It is
defined and subsequently refined during
the Definition and Analysis Stage
through a top-down process of analysis
of the enterprise requirements, enterprise
adopted standards, and the system archi-
tecture. The Technical Strategies compo-
nent captures the high-level description
of the complete system vision and de-
fines how the infrastructure will operate
[9]. The Services Identification compo-
nent is built up over time and is influ-
enced by technology trends, product
assessments, and the anticipated needs of
the business applications.

Development cycle stages are aug-
mented with a series of structured pro-
totypes for COTS product evaluation
and integration. For each COTS family,
the prototypes evolve from initial analy-
sis prototypes for a make-or-buy deci-
sion to, first, a series of design proto-
types for COTS product selection and
detailed assessment, and next, to a dem-
onstration prototype that becomes part
of the development test bed. The tim-
ing of the prototypes aligns with the
development stages, which depend on
the products from their corresponding
prototypes. This close coupling of
prototyping and classic development
stages characterizes the IIDA.

Each pass through the stages in
Figure 2 yields an incremental version

of the infrastructure that can be inte-
grated with applications and deployed.
After the implementation of each ver-
sion, successive developmental cycles
are initiated. The infrastructure thus
evolves toward the target infrastructure
by providing an increased level of ser-
vices to business applications and
developers and by incorporating new
underlying technology and products.

Infrastructure components are inte-
grated into the existing infrastructure
baseline. The components in this inte-
grated infrastructure baseline are then
ready to be integrated and tested with
business applications. Infrastructure
development ends with a technical
platform upon which business applica-
tions can run effectively rather than
with an operational product. The scope
of this article is infrastructure develop-
ment: It does not include the external
integration, testing, or distribution of
business applications.

IIDA Stages
The following is a summary of the major
activities of each IIDA stage.
Definition and Analysis Stage
• Enterprise requirements and stan-

dards, system architecture, and tech-
nical strategies are defined and re-
fined.

• Version-specific functional infra-
structure requirements are estab-
lished by considering business appli-
cation areas, architectural
imperatives, and technology avail-
ability.

Functional Design Stage
• Services included in the target and

current versions are identified and
defined.

• Prototypes are used to identify lead-
ing candidate COTS components.

Physical Design Stage
• Interfaces between applications and

infrastructure are defined (API is
established).

• Internal design of services is defined
both functionally and technically.

• COTS and to-be-built components
are identified.

• Prototypes are used to select and
characterize COTS components.

• Preliminary bill of materials is cre-
ated for acquisition of equipment
and COTS software products.

• Design is calibrated for scaling and
performance considerations to pro-
vide site designers with site configu-
ration guidelines.

• Structure of each to-be-built compo-
nent and its interfaces is defined.

Construction Stage
• To-be-built components are con-

structed.
• Glue code is developed, and the unit

is tested.
• COTS components, glue code, and

built components are integrated into
the infrastructure using the demon-
stration prototype as a test bed.

Test Stage
• Infrastructure versions are tested

prior to being integrated and tested
with business applications.

IIDA Milestones and Deliverable
Documentation
The infrastructure development ap-
proach uses formal and informal reviews,
turnovers, and walk-throughs to main-
tain the degree of formality necessary to
control and communicate the design (see
Figure 3). Formal reviews include
• Technical Review at the end of the

Analysis Stage.
• Design Review during the Physical

Design Stage.
• Test Review at end of the Test Stage.

Formal reviews are attended by orga-
nizations external to the infrastructure
development group as well as infra-
structure developers and managers.

Figure 2. Infrastructure development approach.

A Software Development Process for COTS-Based Information System Infrastructure: Part 1

24 CROSSTALK The Journal of Defense Software Engineering March 1998

These reviews occur once during the
development cycle for each version of
the infrastructure.

Other reviews, turnovers, and walk-
throughs are informal, rolling peer, or
management reviews that typically occur
when pieces of the design, construction,
or integration are ready to be walked
through. Infrastructure developers and
managers participate in the following
informal internal reviews.
• Top-Level Design Walk-throughs

during the Definition and Analysis
Stage.

• Design Turnovers (from design to
development organization) during
the Physical Design Stage.

• Detailed Design Walk-throughs at
the end of the Physical Design Stage.

• Code Walk-throughs during the
Construction Stage.

• Test Design Walk-throughs during
the Construction Stage.

• Development Turnovers (from devel-
opment to test organization) at the
end of the Construction Stage.
The lower portion of Figure 3 shows

the key documents produced during the
IIDA process. Target infrastructure
documents, which include Enterprise
Requirements, Technical Strategies, and
Services Identification, are created once
at the beginning of infrastructure devel-
opment and updated as versions are
produced. Version-specific infrastructure
documents are created for each infra-
structure version. Not shown in the
tables are the informal documentation
packages developed for the formal re-
views and informal walk-throughs.

The Critical Role of Prototypes
At the heart of the IIDA approach is a
series of tailored prototypes, shown as
Analysis, Design, Detailed Design, and
Demonstration prototypes in Figure 2,
which also illustrates their respective
time phasing in the overall process. This
can be viewed as a tailoring of the spiral
development model as each successive
set of prototypes narrows the solution
space for the final implementation.

Analysis Prototypes
Analysis prototypes are used to identify
leading candidate COTS software prod-

ucts in each COTS family. A COTS
family is defined as a group of COTS
software products that performs similar
functions or provides related services to
the application developers. Analysis
prototypes are designed to exercise a
COTS product to determine its general
capabilities and to discover how well it
satisfies the needs of the current version
of the infrastructure. Selection of the
best product in each family is performed
later using the design prototypes.

A sample application can be written
to serve as a test vehicle for the family of
products under evaluation because infra-
structure, by its very nature, provides
services rather than active applications.
The results of the analysis prototypes
feed the version-specific services defini-
tion and the version-specific services
application programming interface
(API) efforts with information on avail-
able COTS product behavior and per-
formance. A suite of COTS products
will be recommended as a result of these
prototypes that, when combined with
custom-developed glue code and to-be-
built software, cover all the requirements
of the combined service areas.

Analysis prototypes are also used to
examine emerging technologies for pos-
sible inclusion in future versions of the
infrastructure. Technology insertion

plays an important role in infrastructure
evolution from version to version.

Through the analysis prototypes,
methods to implement target technical
strategies into future infrastructure ver-
sions can be postulated and developed.
In this role, the analysis prototype sup-
ports the evolving definition of the long-
term vision or target infrastructure.

Design Prototypes
Design prototype help select the best
COTS product to incorporate into the
design from several candidates in each
area identified through the earlier analy-
sis prototypes. A design prototype exer-
cises a COTS product to determine its
functional capabilities and how well it
performs in accordance with its docu-
mentation. Specific benchmarks can be
run in addition to functional tests.
Sample applications will usually be writ-
ten as test vehicles for the products un-
der evaluation and to stimulate service
performance under conditions that
would be found in the application envi-
ronment.

Detailed Design Prototypes
Detailed design prototypes are a special
case of the design prototypes. They serve
as proof-of-concept prototypes and are
designed to exercise the selected COTS
products to demonstrate that detailed

Figure 3. Infrastructure milestones and deliverable documents.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 25March 1998

COTS product capabilities are consis-
tent with the design expectations.
Sample applications are usually written
to serve as a test vehicle for the products
under evaluation. The results of the
detailed design prototypes feed the ser-
vices’ detailed internal design with infor-
mation on COTS behavior and perfor-
mance and with specific language and
syntax requirements to invoke services.

At this level of detail, designers
might find that a COTS product does
not perform as documented or as expect-
ed or that there are unexpected side
effects of a product’s behavior. The
functional design activity receives this
feedback, and may need to modify or
redesign the solution with a substitute
COTS product. The evaluation docu-
mentation created during earlier analysis
and design prototypes is used to stream-
line alternate COTS selection.

Demonstration Prototype
The demonstration prototype is used to
unit test infrastructure components and
to serve as a platform for infrastructure
component-to-component integration.
The sample applications used for the
design prototypes might be reused if
they are robust enough to exercise the
elements tested in the unit test.

The results of the demonstration
prototype feed back into the unit test
activity. Unlike the analysis and design
prototypes, which are investigative and
throwaway in nature, the demonstration
prototype is cumulative and evolves into
a test-bed environment for the infra-
structure.

Application of IIDA
Between 1994 and 1997, the IIDA
method was applied to develop the ini-
tial versions of an infrastructure to sup-
port business application developers for
a large enterprise-wide heterogeneous
system. In the April 1998 issue of
CROSSTALK, we will describe the applica-
tion of the IIDA model to that develop-
ment and examine the practical lessons
learned and pitfalls encountered. u

About the Authors
Greg Fox is a TRW Systems Integration
Group technical fellow and the director

of technology for the
Information Services
Division. He has 28
years experience in
mostly large or complex
information systems.
He has lead the archi-

tecture development and system integra-
tion for several large COTS-based sys-
tems and has been TRW’s information
systems infrastructure project manager
and chief architect for the Integration
Support Contract for Internal Revenue
Service (IRS) modernization. He has
engineering degrees from Massachusetts
Institute of Technology and University of
Southern California and has published
over a dozen papers.

TRW, Inc.
MVA1/4943
12900 Federal Systems Park Drive
Fairfax, VA 22033
Voice: 703-876-4396
E-mail: greg.fox@trw.com

Karen W. Lantner is a
program/project man-
ager for EDS in New
York City. She has 24
years management and
technical experience,
during which she has

managed and consulted on large federal
software development and COTS inte-
gration projects. A member of the team
that developed the EDS Systems Life
Cycle Methodology, she continues to
have a special interest in software devel-
opment methods. She has a bachelor’s
and a master’s degree from Brown Uni-
versity.

EDS
A5N-B50
13600 EDS Drive
Herndon, VA 22071
Voice: 800-336-4498, box no. 52032
E-mail: karen.w.lantner@aexp.com

Steven Marcom is a
senior systems analyst
with the Information
Services Division of
TRW. He has 30 years
managerial and techni-
cal experience develop-

ing computer systems for civil govern-
ment, defense, and commercial
customers. He was TRW’s systems life-
cycle deputy manager and information
systems infrastructure process engineer

for the Integration Support Contract for
IRS modernization. He has been active in
Rapid Application Development, COTS
integration, and prototyping activities.
He has a bachelor’s degree from Pomona
College and a master’s degree from the
American University of Beirut, both in
mathematics. He teaches software devel-
opment and integration at TRW.

TRW, Inc.
FP1
12900 Federal Systems Park Drive
Fairfax, VA 22033
Voice: 703-803-4814
E-mail: marcoms@gisdbbs.gisd.trw.com

References
1. Berson, A., “Openness and Proprietary

Standards,” Client/Server Architecture,
McGraw-Hill, New York, 1992, Section
1.2.2.

2. Cerutti, D. and D. Pierson, “The Rise of
Open Systems,” Distributed Computing
Environments, McGraw-Hill, New York,
1993, Chap. 2.

3. National Institute of Standards, Applica-
tion Portability Profile, The U.S.
Government’s Open System Environ-
ment Profile OSE/1 Version 2.0, NIST
Special Publication 500-210, June 1993.

4. Martin, James, Information Engineering,
Prentice-Hall, Englewood Cliffs, N.J.,
1989.

5. Software Engineering Institute, “A Com-
mercial/Business Perspective,” Proceedings
of the SEI/MCC Symposium on the Use of
COTS in Systems Integration, Special
Report CMU/SEI-95-SR-007, June
1995, p. 24.

6. Software Engineering Institute, “Systems
Architecture and COTS Integration,”
Proceedings of the SEI/MCC Symposium
on the Use of COTS in Systems Integration,
Special Report CMU/SEI-95-SR-007,
June 1995, p. 26.

7. Royce, W.W., “Managing the Develop-
ment of Large Software Systems: Con-
cepts and Techniques,” Proceedings of
ICSE9, IEEE Computer Society Press,
1987.

8. Boehm, B.W., “A Spiral Model of Soft-
ware Development and Enhancement,”
Computer, May 1988, pp. 61-72.

9. Cooper, R. and G. Fox, “Technical
Strategies to Guide the Design of Dis-
tributed Information Systems,” SIG
Technology Review, TRW Systems Inte-
gration Group, Winter 1996.

A Software Development Process for COTS-Based Information System Infrastructure: Part 1

26 CROSSTALK The Journal of Defense Software Engineering March 1998

The Navigation Satellite Tracking and Receiving
(NAVSTAR) Global Positioning System (GPS) Joint
Program Office (JPO) is a joint-service, multinational

organization with over 375 employees. The office develops,
acquires, and sustains a 24-satellite constellation, a worldwide
satellite control network, over 80,000 receiver systems, and a
nuclear detonation detection system. The system is a priority
Department of Defense (DoD) force enhancement program
that provides the capability to precisely determine position,
velocity, and time and to pinpoint nuclear events.

The JPO is located at four primary sites: Los Angeles AFB,
Calif.; Peterson AFB, Colo.; Robins AFB, Ga.; and Patrick
AFB, Fla.

In mid-1992, the GPS JPO was faced with a major
problem. At that time, the 375 users comprising the pro-
gram office used numerous PC-based applications to ac-
complish various tasks. Printers were shared through serial
data switch boxes. Computer support consisted of several
people traversing the building all day in a futile attempt to
“standardize” the software on users’ systems and keep the
various printers and printer interfaces operational. Systems
support was becoming exceedingly difficult and was spiral-
ing hopelessly out of control.

End users would access myriad various mainframe applica-
tions to accomplish their job functions. Several proprietary
systems hosted on proprietary hardware and operating systems
were in place (IBMs VAXs, WANGs, HP 3000s, etc.). Each
system and application was its own “island of information.”
Subsequently, even though there was a physical network in
place, there was no communication between systems. Users
could not send data from one system to other systems or other
users. They had to continue to use paper.

At the same time, the program office continued to generate
thousands of pages of paper-based documents and information
daily. Air Force leadership was pressing for all program offices
to implement acquisition reform initiatives. The program

Implementing a Paperless Environment
The NAVSTAR GPS Block IIF

Engineering Management System Project
Lon Mehlman

Computer Sciences Corporation

office’s leadership was pressing for the introduction of cross-
functional integrated product teams (IPTs). This created the
need for information sharing among geographically dispersed
individuals, the need to open new lines of communication,
and the requirement for greater and faster access to all program
data.

GPS Engineering Management System
Acquisition reform is a new philosophy for weapons systems
procurement that emphasizes government “insight” into con-
tractor processes rather than oversight. The GPS Engineering
Management System (GEMS) is a distributed enterprise infor-
mation infrastructure that is being developed by the
NAVSTAR GPS JPO to support Integrated Weapons Systems

Figure 1. Business processes overlaid upon the GEMS infrastructure.

This article describes the rationale and award-winning benefits of a computer-aided ac-
quisition lifecycle support system. The system has produced savings in cost and efficiency,
all while boosting oversight capabilities. The robust information systems infrastructure for
the NAVSTAR GPS Joint Program Office allows lifecycle logistics support and separates
applications from data, thus protecting major investments in databases. The system has
allowed a reengineering of business processes by integrating work-flow and document man-
agement. The system also establishes an open architecture for future application and pro-
cess integration through the extensive use of government and industry standards.

Field Report

CROSSTALK The Journal of Defense Software Engineering 27March 1998

Management (IWSM) and acquisition
reform initiatives within the JPO.
IWSM is an all-encompassing, cradle-to-
grave weapons systems management
concept. GEMS:
• Allows the integration of JPO busi-

ness processes with the system devel-
opment processes of its contractors
by taking advantage of the latest
advances in information technology.

• Enables the creation of several
paperless processes in an integrated
GPS program-wide environment,
including a cost and schedule man-
agement process, a document review
process, data call processes, and an
engineering change proposal process.

• Separates applications from data,
protects major investments in JPO
databases, and facilitates business
process reengineering by integrating
workflow and document manage-
ment.

• Is an innovative approach to JPO
business process automation that
combines the DoD Joint Continuous
Acquisition and Lifecycle Support
(JCALS) system, best-of-breed indus-
try standard commercial-off-the-shelf
(COTS) software and hardware, and
electronic delivery and access to all
unclassified program data to the
JPO.
Electronic delivery of data to the

JPO is accomplished by the implemen-
tation of a Contractor Integrated Tech-
nical Information Service (CITIS) for all
prime contractors that participate in
GPS JPO programs. CITIS is an elec-
tronic link between the JPO’s GEMS
and the information systems used by
GPS contractors. CITIS also includes
the use of standard data formats, the
GEMS shared data service client soft-
ware, GEMS workstation client soft-
ware, and other mutually agreed to
COTS software tools.

Program data developed by GPS
contractors is made available or delivered
to the JPO via the electronic link. Docu-
ments delivered to the JPO are placed
into a shared electronic library that
maintains version control, access control,
and status of the data. After the data is
delivered to the JPO, JPO IPT members
start the coordination of the documents

electronically by routing program data
through the JPO via the JCALS work-
flow manager.

Objectives
The objectives of the GEMS project are
to redesign the GPS JPO’s information
systems infrastructure to directly support
the concepts of IWSM, integrated prod-
uct development, concurrent engineer-
ing, acquisition reform, integrated weap-
ons systems management, and the
seamless integration of JPO business
processes that can span across the pro-
gram office and its contractors.

The GPS Block IIF Program, respon-
sible for the procurement of the next
generation of GPS satellites, foresaw the
critical need for GEMS, and fully sup-
ported GEMS objectives.

Lt. Col. Al Moseley, the GPS Block
IIF program manager, stated, “The
Block IIF program would be the first
integrated product team in GPS, and
one of the first in the Air Force and the
DoD, to implement a paperless system
to meet program and acquisition reform
objectives.”

Implementation for GPS
Block IIF
The GEMS infrastructure was imple-
mented in a modular fashion, one pro-
cess at a time, and rolled out incremen-
tally to each IPT within GPS. Over the
past year, GEMS has expanded from a
pilot process to receive and review Engi-
neering Change Proposals electronically
to one that now allows users to perform
all configuration and data management
on-line and integrate the cost and sched-
ule management process (see Figure 1).

The GEMS configuration and data
management tools integrate and auto-
mate the JPO data management process.
The data management tools give JPO
users the ability to generate AF (Air
Force) Form 585 and AF Form 1423,
conduct data calls, conduct data scrubs
and track all Contract Data Require-
ment Lists (CDRLs) under review. The
tools also make it easier to board docu-
ments at the JPO configuration control
board and report on data metrics by
extracting the required data from the
GEMS database.

Acquisition reform calls for a reduc-
tion of the number of CDRLs for a
program. One of the management prin-
ciples of the GPS Block IIF Program is
electronic access to all unclassified pro-
gram data. The GEMS data manage-
ment tools, originally used to determine
which CDRLs were to be placed on
contract, now help the JPO determine
what program data contractors are re-
quired to make available electronically
via GEMS and CITIS. The use of
GEMS allowed the GPS Block IIF Pro-
gram to reduce the number of CDRLs
placed on contract from 339 to three
(see Figure 2).

Benefits
GEMS allows the GPS Block IIF and
related programs to immediately begin
doing things better, faster, and cheaper.
In terms of the quality of JPO business
processes, measurable improvements
have been noted in the following areas.

Shortening the process cycle. Prior
to GEMS, the processing cycle for au-
thentication of a system specification
was 18 to 24 months; the new authenti-
cation process is now six months. The
reasons for most delays can be immedi-
ately detected via the work-flow and
corrective action can be taken.

Standardizing JPO processes. The
paper-based processes varied greatly;
now, most JPO processes are docu-
mented not only in operating instruc-
tions but also in GEMS work-flow tem-
plates. The work-flow templates show
the proper routing of documents and
tasks to the proper offices for each type
of process. When action is required on
an electronically delivered document, an
individual in the office of primary re-
sponsibility can select the appropriate
work-flow process template for a given
function, make any necessary adjust-
ments, start a “job,” and accurately track
the status of the document.

Empowered team orientation. The
reengineered GPS Block IIF IPT busi-
ness processes use GEMS. This results in
a largely matrixed organization, grouped
by IPTs, in which each team is respon-
sible for a product and given sufficient
decision-making authority. In the old
system, documents were being circulated

Implementing a Paperless Environment: The NAVSTAR GPS Block IIF Engineering Management System Project

28 CROSSTALK The Journal of Defense Software Engineering March 1998

among functional departments. Documents are now handled
by cross-functional project teams, and the JPO business pro-
cesses are well defined and easier to manage.

Facilitation of “process change.” GEMS has allowed the
creation of “virtual teams” that consist of both contractor and
Block IIF IPT members working side by side in the
contractor’s plant and in multiple locations. Users quickly
communicate issues throughout the group via the infrastruc-
ture. The organizational culture has become much more recep-
tive to change, and information technology provides the neces-
sary channels to disseminate information and facilitate change.

Stable configuration management. The heart of the
GEMS system is the reference library, which holds most of the
GPS program data. This data is cataloged by several factors
(project, organization, type, subtype, date, etc.) for easy search
and retrieval. The reference library is the single location for
current copies of all program data; this eliminates having mul-
tiple versions of documents in circulation. Authorized indi-
viduals have fast access to the latest version of a document,
including updates, from one location. The data is archived for
safe, long-term storage.

Flexible implementation and usage. The nature of GPS
JPO business forces GPS Block IIF team members to conduct
business in many places other than their offices. The wide-area
network and CITIS will permit users to view the same data
from an equipped contractor’s facility or remote JPO location.
Based on their account privileges, these users have the same
capabilities they have in their home office. Because of these
capabilities, collocated GPS Block IIF team members in the
contractor’s plant are achieving unprecedented partnerships.

Management “insight” vs. oversight. The flexibility of
GEMS permits GPS Block IIF IPT leads to task any GEMS
user no matter where they are located. GEMS users will always
have all the necessary tools and data to accomplish the work,
even when they are not in the home office. The GPS Block IIF
IPT leads have the same insight into job progress as if they
were right down the hall.

Authenticating a GPS Block IIF Specification
Authenticating a specification is the process of reviewing the
specification for accuracy and completeness by the government
and contractor’s engineering teams. An example of how GEMS
is streamlining GPS operations is the authentication of the
GPS Block IIF System Specification for the new GPS Block
IIF satellite. This document serves as the technical backbone of
the GPS Block IIF program and is the starting point for thou-
sands of derived requirements.

Before GEMS, this process had always been long and
costly. Paper copies of the specification were distributed and
passed from one engineer to the next. The engineers had the
continual task of coordinating comments, scheduling meet-
ings, and checking status. Different groups of engineers would
review issues that others had already resolved. Just the cost to
reproduce the document would run into the thousands of
dollars before a draft would be approved.

Because of the inability to track and manage the review
process, the paper-based method of authenticating system
specifications would normally take one to two years after con-
tract award. Now, using GEMS, the reengineered process is
significantly streamlined. Distribution to the entire GPS engi-
neering team is virtually instantaneous. The reviewers can
simultaneously see all comments to the document as soon as
they are entered. Work-flows allow for management and track-
ing of the document throughout the review cycle. Key review-
ers are notified if their input was overdue, thus helping the
authentication review run smoothly.

Review managers no longer need to sit down with stacks of
the same document with everyone’s comments in the margins
and try to consolidate them. Managers are now able to review,
consolidate, approve, and transmit the results back to the con-
tractor for incorporation.

The streamlined process using GEMS allowed the GPS
Block IIF IPT to authenticate the IIF system specification in
six months after contract award. The time savings not only
saved substantial money but also has given both the govern-
ment and contractors a solid baseline to build the GPS Block
IIF program much sooner than would have been possible with
the paper-based process. This in turn will help prevent require-
ments creep, which may save the government even more
money in the future by preventing cost overruns.

Lessons Learned
• A key factor in the success of the GEMS project has been

senior management commitment, a well-known success
factor for any program that requires cultural change.

• User involvement in the early stages of the project helped
ensure acceptance of the system.

• Variations in the desktop computer environment should be
eliminated to the fullest extent possible. This will accelerate
rollout and training and greatly reduce the burden on the
system help desk.

• After the design and development of the new systems and
processes are completed, management should resist the

Figure 2. GEMS impact on GPS Block IIF Program.

Field Report

CROSSTALK The Journal of Defense Software Engineering 29March 1998

desire to roll out the new systems too
quickly for instant payback. A well-
managed rollout to individual func-
tional groups will allow for better
and more targeted training and will
contribute to a smoother implemen-
tation.

• Implementing electronic access to
program data creates several issues
related to the “ownership” of pro-
gram data and who maintains the
data of record. For the GPS Block
IIF Program, this was resolved by
the concept of a shared data envi-
ronment between the contractor
and the program office databases.
Data in each database can be
viewed by both government and
contractor IPT members. Data to
be retained by the program office
can easily be transferred from the
contractor’s database to the GEMS
reference library by IPT members
over the electronic link.

• Credit should also be given to the
implementation method. System
development and deployment
should not be implemented piece-
meal during the process reengi-
neering effort (risky integration),
or a monolithic, all-at-once ap-
proach (too long to see results),
but instead implemented in a
modular, layered, bottom-up ap-

lowed the GPS Block IIF program and
the GPS JPO to immediately implement
acquisition reform initiatives by permit-
ting fast, timely access to all unclassified
program data.

Because of initiatives such as GEMS,
the GPS Block IIF program won the
1995 Defense Standardization Program
Award and the Secretary of the Air Force
for Acquisition’s Lightning Bolt Acquisi-
tion Reform Award for leading the way
in acquisition reform excellence. The
GPS JPO and the GPS Block IIF team
continues to challenge themselves to do
business better. u

About the Author
Lon Mehlman is a
senior computer scien-
tist with CSC in
Moorestown, N.J.. He
has over 15 years experi-
ence in the information
technology industry. He

has a bachelor’s degree in economics/
computer science and in sociology from
the University of California at Los Angeles
and a master’s of business administration
degree from Pepperdine University.

E-mail: mehlmald@gps1.laafb.af.mil.

Point of contact for GEMS:
Ernestine Reed
SMC/CZEC, 310.0363.2943
Los Angeles AFB, CA 90245

Implementing a Paperless Environment: The NAVSTAR GPS Block IIF Engineering Management System Project

Web Addition

The following is excerpted from Emmett Paige’s keynote address at the Tri-Ada conference in St. Louis
in November 1997. The speech can be found in its entirety in CROSSTALK’s Web Addition section at

http://www.stsc.hill.af.mil/CrossTalk/crostalk.html.

The New Course for Ada in the DoD
Retired Lt. Gen. Emmett Paige Jr. (U.S. Army)

President, OAO Corporation

“There are numerous examples of superior technology failing to capture a consumer market. Military software has different re-
quirements than consumer software. The DoD needs to learn what it can from the commercial sector and use those best practices
that are applicable and appropriate for military requirements.

“The National Research Council study is right in asserting that Ada needs government support to survive. The Ada effort also
needs help from industry to aggressively produce and market high-quality Ada tools and compilers. Perhaps most important is
support from the education community. Without more and more well-educated scientists and engineers, not only will the Ada effort
fail, but American technological superiority will become history.”

proach to minimize risk exposure
and maximize flexibility.

Summary
The GEMS-based enterprise infrastruc-
ture fills the gap between ordinary office
automation and the automation of JPO
business processes. Using the DoD’s
JCALS infrastructure has allowed the
IPTs of the NAVSTAR GPS JPO to
concentrate on deploying modular pro-
cess-based applications that can share
enterprise data. Unlike systems that do
not take advantage of continuous acqui-
sition and lifecycle support (CALS) and
industry standards, there are no con-
straints on data reuse, the longevity of
data, or the amount or types of data
(records, documents, or graphics) the
system can manage, route, and ware-
house. The organization retains its in-
vestment in applications, business pro-
cesses, and data.

Because the GEMS business process
applications that are developed on the
DoD’s JCALS infrastructure are modular
and use CALS and industry standard
data formats, the applications and pro-
cess work-flows can be easily updated as
the GPS JPO continuously improves its
business processes. The applications can
also be customized and deployed to other
system program offices that use the
JCALS infrastructure. GEMS has al-

30 CROSSTALK The Journal of Defense Software Engineering March 1998

Conference registration for the Tenth
Annual Software Technology Confer-
ence (STC ’98) is well underway. If you
haven’t already registered, register now.
We anticipate over 3,500 participants
will meet at the Salt Palace Convention
Center in Salt Lake City, Utah during
the week of April 19-23, 1998.

The U.S. Air Force, Army, Navy,
Marine Corps, and the Defense Infor-
mation Systems Agency (DISA) have
again joined forces to co-sponsor STC
’98, the premier software technology
conference in the Department of De-
fense (DoD). Once again, Utah State
University Extension is the conference
nonfederal co-sponsor.

The federal co-sponsors are Lt. Gen.
David J. Kelley (DISA), Lt. Gen. Wil-
liam Campbell (U.S. Army), Dr. Hel-
mut Hellwig (U.S. Air Force), Rear
Adm. George Wagner (U.S. Navy), and
Maj. Gen. Joseph Anderson (U.S. Ma-
rine Corps). The conference is hosted by
Maj. Gen. Richard H. Roellig, com-
mander of Hill Air Force Base, Utah and
the Air Force Software Technology Sup-
port Center (STSC).

The theme for STC ’98 is “Knowl-
edge Sharing – Global Information
Networks.”

Hotel guestrooms are filling up fast.
All reservations must be made through
the Salt Lake City Visitor’s Bureau/STC
Housing Bureau. Reservations for hotel
quest rooms opened in August with the
mailing of our Call for Speakers and

Exhibitors brochure. Many early birds
took advantage of being able to book
their rooms then. We highly recom-
mend that you send in your reservation
form as soon as possible.

Conference registration and housing
information and forms are available at
http://www.stc98.org or by calling
STC fax-on-demand 435-797-2358.
You may also call the conference man-
agement at 801-777-7411 or DSN
777-7411.

The opening General Session on
Monday afternoon will include keynote
addresses given by Tony Valletta, acting
assistant secretary of defense, and re-
tired Vice Adm. Jerry Tuttle (U.S.
Navy), president of ManTech Strategies
Associates. Each of the co-sponsors also
will address this session. Among the
many other distinguished leaders in the
DoD and industry executives who will
speak at this year’s conference are Mark
Schaeffer of the Office of the Under
Secretary of Defense (Acquisition and
Technology), Miriam Browning, direc-
tor for information management, Of-
fice, Director for Information Systems
Command, Control, Communications,
and Computers, and Debra Filippi,
deputy assistant chief of staff for com-
mand, control, communications, and
computers systems integration.

Beginning in mid-January, as infor-
mation was received from presentation
speakers, presentation summaries and
biographical information have been

listed at our Web site, http://
www.stc98.org. You will want to fre-
quently visit this Web site prior to the
conference to get the latest up-to-date
information.

Conference management is coordi-
nating military air flights to the confer-
ence from the San Diego and Washing-
ton, D.C. areas. If you are interested, it
is essential that you contact conference
management as soon as possible at 801-
777-7411 or DSN 777-7411 or E-mail
at wadel@software.hill.af.mil.

On Monday, April 20, 1998, con-
ference participants may attend the
“Birds-of-a-Feather” luncheon for
which they have pre-registered. Partici-
pants should register for the luncheon
they wish to attend by marking the
appropriate box on the registration
form. Designated luncheon discussion
topics will include systems engineering,
acquisition, and process improvement.

If we can be of further assistance,
please call or E-mail. This is one confer-
ence that you do not want to miss. We
will see you in April!

Dana Dovenbarger, Conference Manager
Lynne Wade, Assistant Conference Manager
Software Technology Support Center
OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-777-7411 DSN 777-7411
Fax: 801-775-4932 DSN 775-4932
E-mail: dovenbar@oodiss1.hill.af.mil

 wadel@software.hill.af.mil

STC ’98: If You Haven’t Registered, You Need to Now
Dana Dovenbarger

Software Technology Conference

CROSSTALK The Journal of Defense Software Engineering 31March 1998

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
alderr@software.hill.af.mil

Managing Editor Tracy Stauder
801-777-9239 DSN 777-9239
staudert@software.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
gaskins@software.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5555 ext. 3027
hepwortk@software.hill.af.mil

Associate Editor Lorin J. May
801-775-5555 ext. 3026
mayl@software.hill.af.mil

Editorial Assistant Bonnie May
801-775-5555 ext. 3023
mayb@software.hill.af.mil

Features Coordinator Heather Winward
801-775-5555 ext. 3028
winwardh@software.hill.af.mil

Customer Service 801-777-8045 DSN 777-8045
custserv@software.hill.af.mil

Fax 801-777-8069 DSN: 777-8069
STSC On-Line http://www.stsc.hill.af.mil

CROSSTALK On-Line http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html

ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-777-8045, DSN 777-8045
Fax: 801-777-8069, DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the
attention of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense soft-
ware community. Articles must be approved by the CROSSTALK editorial board
prior to publication. Please follow the Guidelines for CROSSTALK Authors, available
upon request. We do not pay for submissions. Articles published in CROSSTALK

remain the property of the authors and may be submitted to other publications.

Reprints and Permissions: Most material in CROSSTALK may be reprinted at no
charge. Coordinate reprint requests with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that
are of interest to our readers. There is no fee for this service, but we must
receive the information at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the In-
ternet. World Wide Web access is at http://www.stsc.hill.af.mil.
The STSC maintains a Gopher server at gopher://gopher.stsc.hill.af.mil/. Its ftp
site may be reached at ftp://ftp.stsc.hill.af.mil. The Lynx browser or gopher
server can also be reached using telnet at bbs.stsc.hill.af.mil or by modem at
801-774-6509 or DSN 775-3602. Call 801-777-7989 or DSN 777-7989 for
assistance, or E-mail to portr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies
of back issues of CROSSTALK free of charge. If you would like a copy of the
printed edition of this or another issue of CROSSTALK, or would like to subscribe,
please contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air Lo-
gistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force soft-
ware organizations identify, evaluate, and adopt technologies that will improve
the quality of their software products, their efficiency in producing them, and
their ability to accurately predict the cost and schedule of their delivery. CROSSTALK

is assembled, printed, and distributed by the Defense Automated Printing Ser-
vice, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individuals
actively involved in the defense software development process. Got an idea for BACKTALK? Send an E-mail to mayl@software.hill.af.mil

I’ve been a professional corporate trainer for nearly seven years, although I didn’t
realize it until recently. Technically, my title has been “singer in a semiprofessional
quartet,” but it turns out we’ve been doing exactly what trainers do all along. I’m
not talking about training in programming languages or technologies—we are best
qualified to train people in your organization’s next program or edict. But before our
sales pitch, I’ll use my own experiences to explain the importance of training.

I have no experience with software training, but I received great training when I
sold home electronics for a national retailer. I realize that retail sales and software
engineering are worlds apart—in retail sales, the effectiveness of front-line workers
has a huge impact on profitability—but there are some important similarities.

For example, you may think selling TVs and stereos involves nothing more than
bluffing about product features and implying that most products tend to explode
into flames if you don’t buy an extended service plan. However, there are many tech-
nical aspects, such as how to steal sales from co-workers and how to avoid lawsuits
while insinuating to customers that the competition, for entertainment, likes to push
old ladies in front of moving buses. So for this part-time job, the company gave me
four weeks of full-time paid training in every imaginable sales technique and product
feature, knowing it would pay big dividends. It matters little that I quit before they
could make back their training investment, because we shouldn’t carry this analogy
too far—after all, the retail industry has a big problem with employee turnover.

Yet, despite great returns such as these, many managers are tight with their train-
ing dollars, and sometimes ignore the basics. For example, I was fresh out of college
when I got a job creating artsy how-to books. I realize the publishing industry is also
world’s apart from software programming—publishing is a deadline-, coordination-,
and process-intensive field where any oversight can become an expensive embarrass-
ment—but if you use your imagination, there’s a lesson here. The following near-
verbatim excerpt shows my former boss’ mistaken attitude about training, although
I’m certain software managers would never be this shortsighted:
Boss: “We need you to quickly create these five books that cover topics you know nothing about. Use

these programs you’ve never seen and follow our strict processes, which we won’t explain.”
Me: “… ah, all right. Who can show me how to—”
Boss: “—Oh, so we get to hold your hand, ‘Mr. Qualified’? Let’s see some initiative! Well, that does it

for your training—if you have any questions, feel free to rudely interrupt something important.”
The problem? Many managers believe that if employees have skill and “initiative”

(manager code for “clairvoyance”), they don’t need training. But at my next publish-
ing job, I learned that even seasoned employees need regular training. Among other
duties, I had to get “old-school” people to use new software and computers. At first I
thought they would resist learning new ways to do their jobs, but after a cycle of
training, mentoring, and hands-on experience, within a year they were all proficient
on the new system, which they subsequently ignored. And then we were all laid off.

So I can’t overemphasize the long-term benefits of training—which brings me to
my sales pitch. For years, businesses and professional groups have hired my quartet
to perform at banquets and parties. See if what we’ve been doing resembles any
session where your organization has covered a company program, process, or policy.

Picture a roomful of professionals who are there only because their bosses made
them go. Someone in a high position stands up and drones on for a few minutes,
occasionally blurting out words like “vision” or “excellence.” Eventually, the per-
formers (read: “trainers”) are introduced, who then put on a well-choreographed
presentation, interspersed with corny jokes. The person who paid for this sits in
rapt attention, while the rest nervously glance at their watches and try not bang
their heads on the table too loudly when they fall asleep.

Sound familiar? To complete the transition from “singers” to “trainers,” we’ll just
need to start handing out binders, which no one ever reads anyway. But our binders
won’t be stuffed away and forgotten—they’ll be made of chocolate. Our half-hour of
“training” will provide the measurable results of many of the training sessions you’ve
been through: the trainers get paid, your boss is satisfied, and everybody leaves the
room and continues with business as usual. Except that we’re quick, cheap, and
sometimes we’re even asked to do an encore! Hire us now, and we’ll throw in a free
recording of our barbershop rendition of “Stairway to Heaven.” —Lorin May

Barbershop Training: No Results for Less Money

BACKTALK

